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Abstract. The direct integration of second order initial and boundary value problems is
considered in this paper. We employ a new class of orthogonal polynomials constructed as basis
function to develop a two-step hybrid block method (2SHBM) adopting collocation technique.
The recursive formula of the class of polynomials have been constructed, and then we give
analysis of the basic properties of 2SHBM as findings show that the method is accurate and
convergent. The boundary locus of the proposed 2SHBM shows that the new scheme is A-stable.

1. Introduction
Second order differential equation of the form

y′′ = f(x, y, y′), x ∈ [a, b] (1)

with initial conditions

y′(a) = α, y′(b) = β or (2a)

y(a) = α, y(b) = β (2b)

arise frequently in areas of science, engineering and technology [1]. Some of these equations (1)-
(2) have no analytical solution, thereby numerical schemes were and are being developed to solve
these problems. Earlier methods involves reducing the second order differential equation to a
system of first order before solving them with existing method [2–5] were able to solve problems
of this type by reducing the problem of second order to first order, however the process is time
consuming and rigours to implement. But direct method which are self-starting and take less
computation time are developed in terms of linear multi-step methods (LMMs) [6] which are
called block method. In the paper [7] authors used the self-starting scheme to derive a class of
one-step hybrid methods for the numerical solution of second order differential equation with
power series. In the study [8] a family of second derivative block methods for stiff initial value
problems (IVPs) for ordinary differential equations (ODEs) is proposed.

In this work, we develop a two-step hybrid block method (2SHBM) with orthogonal
polynomials as a basis function using collocation technique.

Our derived scheme yield very good results compared to the existing methods in the literature
[9–14] and is also able to solve IVPs and BVPs.

Людмила
Печатная машинка

http://creativecommons.org/licenses/by/3.0


PFSD-2018

IOP Conf. Series: Journal of Physics: Conf. Series 1145 (2019) 012040

IOP Publishing

doi:10.1088/1742-6596/1145/1/012040

2

2. Development of the Method
2.1. Construction of Orthogonal Polynomial Basis Functions
According to [15] two functions are said to be orthogonal to one another if their inner product is
zero, hence a family of functions forms an orthogonal system on an interval (a, b) with a weight
function w(x) if for any two distinct members of the family

〈ϕ1, ϕ2〉 =

∫ b

a
ϕ1(x)ϕ2(x)w(x)dx = 0. (3)

An orthogonal system can be written as a sequence of functions {ϕn}∞n=0 and the corresponding
orthogonal property can be expressed as 〈ϕi, ϕj〉 = 0 for i 6= j.

We defined the orthogonal polynomials ϕr(x) over the interval (−1, 1) with respect to the
weight function w(x) = x2 as

ϕr(x) =

n∑
r=0

Cn
r x

r. (4)

In order to calculate the real coefficients Cn
r we use the additional property

ϕi(1) = 1, i = 0, 1, . . . , n. (5)

Denote by An the set of indexes for two distinct members of the orthogonal system:

An = {(i, j) ∈ N2 | 1 ≤ i+ 1 ≤ j ≤ n}. (6)

The set An is the finite set and depends on the value of n. Fixing n = 5 in Equation (4) the
following orthogonal system is obtained:

ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) =
1

2

(
5x2 − 3

)
, ϕ3(x) =

1

2

(
7x3 − 5x

)
, (7)

ϕ4(x) =
1

8

(
63x4 − 70x2 + 15

)
, ϕ5(x) =

1

8

(
99x5 − 126x3 + 35x

)
.

These polynomials are employed as the basis functions for the derived scheme. In the same vein,
the orthogonal polynomials ϕr(x) for n > 5 can be obtained.

2.2. Numerical Scheme
We seek to derive numerical scheme for the numerical solution of the problem (1)-(2) with using
the LMMs form [6]:

k∑
i=k−2

αiyn+1 = h2
k∑

i=0

βifn+1 + h2βvfk− 1
2

(8)

where k is the number of blocks, h is step of the method, αi, βv are the real unknown parameters
to be determined, i = 0, 1, . . . , r + s− 1, r is the number of collocation points, s is the number
of interpolation points, and v =

{
0, 1, 32 , 2

}
.

We express the approximation of the analytical solution of the problem (1)-(2) with the the
derived orthogonal polynomials (7) of the form

yn(x) =

n∑
i=0

αiϕi(x) (9)
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where n = r+ s− 1. We interpolate at the interval [0, 1] and collocate at points v =
{

0, 1, 32 , 2
}

.
From the s = 2 interpolation and r = 4 collocation points we obtained a system of six equations
each of order n = r + s− 1 = 5. From equations (8) and (9) we obtain the continuous scheme

y(x) = α0yn + α1yn+1 + α2fn + α3fn+1 + α4fn+ 3
2

+ α5fn+2. (10)

From the scheme (10), taking t = x− xn the value of the αi, i = 0, 1, . . . , n were obtained using
the matrix inversion algorithm.

α0 = 1− t

h
, (11)

α1 =
t

h
,

α2 =
1

2520

756h3 + 135h

h3
− 1

7560

(1869h4 + 1950h2 + 70)t

h3
+

1

270

(
54h3 + 15h

) (
5
2 t

2 − 3
2

)
h3

− 1

6930

(
715h2 + 42

) (
7
2 t

3 − 5
2x+ 5

2xn
)

h3
− 1

63

63
8 t

4 − 35
4 t

2 + 15
8

h2

− 2

185

99
8 t

5 − 63
4 t

3 + 35
8 x−

35
8 xn

h3
,

α3 = − 1

4h
− 1

1260

(
651h4 − 900h2 − 70

)
t

h3
− 7

27

5
2 t

2 − 3
2

h2
+

2

1155

(
165h2 + 21

) (
7
2 t

3 − 5
2 t
)

h3

− 2

27

63
8 t

4 − 35
4 t

2 + 15
8

h2
+

4

495

99
8 t

5 − 63
4 t

3 + 35
8 t

h3
,

α4 =
2

7h2
+

2

945

(
168h4 − 300h2 − 35

)
h3

t+
8

27

5
2 t

2 − 3
2

h2
− 8

34665

(110h2 + 21)
(
7
2 t

3 − 5
2 t
)

h3

+
16

189

63
8 t

4 − 35
4 t

2 + 15
8

h2
− 16

1485

99
8 t

5 − 63
4 t

3 + 35
8 t

h3
,

α5 = − 5

56h2
− 1

2520

(
231h4 − 450h2 − 70

)
t

h3
− 5

54

5
2 t

2 − 3
2

h2
+

1

2310

(
165h2 + 42

) (
7
22 t

3 − 5
2 t
)

h3

− 5

189

63
8 t

4 − 35
4 t

2 + 15
8

h3
+

2

495

99
8 t

5 − 63
4 t

2 + 35
8 t

h3
.

Substituting the value of αi, i = 0, 1, . . . , n into the scheme (10) and evaluating at x = 3
2 and

x = 2 yields the following implicit scheme:

yn+ 3
2

= −1

2
yn +

3

2
yn+1 +

1

24
h2fn +

13

32
h2fn+1 −

5

48
h2fn+ 3

2
+

1

32
h2fn+2, (12a)

yn+2 = −yn + 2yn+1 +
1

12
h2fn +

5

6
h2fn+1 +

1

12
h2fn+2. (12b)

Differentiating the continuous scheme (12) with respect to x and evaluating at xn, xn+1,
xn+ 3

2
, and xn+2 yields the following discrete scheme:

zn = −yn
h

+
yn+1

h
− 89

360
hfn −

189

360
hfn+1 +

128

360
hfn+ 3

2
− 33

360
hfn+2, (13a)

zn+1 = −yn
h

+
yn+1

h
+

31

360
hfn +

234

360
hfn+1 −

112

360
hfn+ 3

2
+

27

360
hfn+2, (13b)

zn+ 3
2

= −yn
h

+
yn+1

h
+

233

2880
hfn +

2562

2880
hfn+1 −

56

2880
hfn+ 3

2
+

141

2880
hfn+2, (13c)
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zn+2 = −yn
h

+
yn+1

h
+

31

360
hfn +

294

360
hfn+1 +

128

360
hfn+ 3

2
+

87

360
hfn+2. (13d)

Equations (12), (13) yield our desired block method which is self-starting method. Now we
present equations (12), (13a) in matrix notation form:

A(0)Ym = hBF (Ym) +A(1)Yn−1 + hDF (Yn−1), (14)

where h is affixed mesh size within a block, vectors Ym = (yn+1, yn+ 3
2
, yn+2)

>, F (Ym) =

(fn+1, fn+ 3
2
, fn+2)

>, Yn−1 = (yn−2, yn−1, yn)>, F (Yn−1) = (fn−2, fn−1, fn)>, and matrices

A(0) =

 1 0 0
0 1 0
0 0 1

 , A(1) =

 0 0 1
0 0 1
0 0 1

 , B =

 31
60 −16

45
11
120

189
160 −51

80
27
160

28
15 −32

45
4
15

 , D =

 0 0 89
360

0 0 193
480

0 0 26
45

 .

2.3. Order and Error Constant of Proposed Method
We define local truncation error associated with a second order differential equation (1) by the
difference operator

L[y(x);h] =
k∑

i=0

[αiy(xn + ih)− h2βif(xn + ih)] (15)

where y(x) is an arbitrary function, continuously differentiable on [a, b]. Expanding the
expression (15) in the Taylors series about the point x, we obtain:

L [y(x);h] = C0y(x) + C1hy
′(x) + C2h

2y′′(x) + . . .+ Cp+2h
p+2y(p+2)(x) (16)

where vectors

C0 =

k∑
i=0

αi, C1 =

k∑
i=0

iαi, C2 =
1

2!

k∑
i=0

iαi − βi, . . . ,

Cq =
1

q!

k∑
i=0

iqαi − q(q − 1)(q − 2)iq−2βi, where q = 3, 4, 5 . . . .

According to Lambert [3] the method’s order is p if

C0 = C1 = C2 = . . . = Cp = Cp+1 = 0 and Cp+2 6= 0.

Therefore, Cp+2 is the error constant and Cp+2h
p+2y(p+2)(xn) is the principal local truncation

error at the point xn. The equations (12a) and (12b) are of order p = 4 with the error constant

Cp+2 = C6 =
[
− 1

240 ,−
21

10240

]>
and Cp+2 = C6 =

[
−9

4 ,−
61
8 ,−

171
16 ,−

7
4

]>
respectively.

2.4. Zero Stability of the Method
According to Lambert [3], a linear multi-step method is said to be zero-stable if no root of its
characteristic polynomial ρ(R) has no modulus greater than one and if every root of modulus
one has multiplicity not greater than the order of the differential equation.

To analyze the zero-stability of the methodwe use the matrix notation (14) of the proposed
block method and the characteristic polynomial

ρ(R) = det(RA(0) −A(1)). (17)
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Substituting A(0) and A(1) in equation (17), we obtain the characteristic polynomial

ρ(R) = R(R− 1)2

which implies that its roots are R1 = 0, R2 = R3 = 1. According to Fatunla [2] the proposed
two-step block hybrid method is zero-stable since from ρ(R) = 0 satisfies |Rj | ≤ 1, j = 1, 2, 3
and the multiplicity of roots does not exceed two.

2.5. Region of Absolute Stability of the Method
Stability regions are a standard tool in the analysis of numerical formulas for ODE problems.
To evaluate and plot the region of absolute stability of 2SHBM, the methods were reformulated
as general linear method [4] expressed as:[

Y
yi+1

]
=

[
A U
B V

] [
hF (Y )
yi+1

]
, (18)

where

A =

 a11 a12 . . . a1s
...

...
. . .

...
as1 as2 · · · ass

 , B =

 b11 b12 . . . b1s
...

...
. . .

...
bs1 bs2 · · · bss

 ,
Y =

 y
yn+1

yn+2

 , yi+1 =

[
yn+k

yn+k−1

]
, yi−1 =

[
yn+k−1
yn+k−2

]
Also the elements of the matricesA, B, U and V were obtained from interpolation and collocation
points and then substituted into the stability matrix as

M(z) = V + zB(I − zA)−1U, z ∈ C. (19)

The stability matrix M(z) (19) was substituted into the stability function

ρ(η, z) = det(ηI −M(z)), (20)

where I is identity matrix, and then computed with Maple software to yield the stability
polynomial. The coefficients of the block method in (A,B,U, V ) formulation is shown below:

[
A U
B V

]
=



0 0 0 0 0 1
89
360

31
60 −16

45
11
120 0 1

1
24

13
32 − 5

48
1
32

3
2 −1

2
1
12

5
6 0 1

12 2 −1
1
12

5
6 0 1

12 2 −1
89
360

31
60 −16

45
11
120 0 1

 (21)

By substituting the entries of the matrix (21) into Equations (19) and (20), the stability
polynomial of the block method is

f(z) =
1

2

1

9z3 − 70z2 + 714z − 1440

(
18η2z3 − 140η2z2 − 3ηz3 + 1428η2z − 827ηz2

−2880η2 − 1356ηz − 191z2 + 8640η − 1512z − 5760

)
.

The region of absolute stability for the block method are shown in Figure 1. In this case the
stability region is the exteriors of the curve drawn and the proposed method is A-stable.
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Figure 1. Stability region of the proposed 2SHBM is the exteriors of the blue curve

Figure 2. Comparison numerical solutions of proposed 2SHBM with RK45 method for the
Problem 1 [9]: a) relaxation oscillation, b) phase portrait.

3. Numerical Examples
We consider four numerical examples: the Van Der Pol Oscillator Problem [9], the IVP of
Bratu-type [10], the Troesch’s Problem [11–13] and the nonlinear system of BVP [14] to test the
efficiency of the derived orthogonal-based two-step hybrid block method.

Problem 1. Van Der Pol oscillator [9]

y′′ − 2ξ
(
1− y2

)
y′ + y = 0, y(0) = 0, y′(0) = 0.5, x ∈ [0, 10], ξ = 0.025.

Problem 2. Consider the second order initial value problem of Bratu type [10]

y′′ − 2 exp(y) = 0, y(0) = 0, y′(0) = 0, 0 ≤ x ≤ 1.

The exact solution is y(x) = −2 ln(cosx). The comparison absolute error of proposed 2SHBM
with the method [18] is given in Fig. 3.

Problem 3. Consider the Troesch’s Problem [13]

y′′ = n sinh(ny), y(0) = 0, y(1) = 1, 0 ≤ x ≤ 1.
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Figure 3. Comparison absolute error of proposed 2SHBM with the method [18] for
Problem 2 [10].

Figure 4. Numerical solution of Problem 3 [13] for different values of n.

Fig. 4 shown the comparison between approximate solutions obtained with the proposed method,
using the Troesch’s parameter n = {0.25, 0.5, 1, 1, 5, 2, 2.7}.

Problem 4. Nonlinear system of boundary value problem [14]. The equations governing the
free convective boundary-layer flow above a heated impermeable horizontal surface are

f ′′ +mh+

(
m− 2

3

)
ηh′ = 0,

h′′ +

(
m+ 1

3

)
fh′ −mf ′h = 0,

with mixed boundary conditions:

f (0) = 0, f ′ → 0 as η →∞,
h (0) = 1, h→ 0 as η →∞.
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Figure 5. The comparison of numerical solutions of Problem 4 [14], m = 1.

The comparison of 2SHBM and Runge-Kutta method of the value h, f ′ against η for values of
m = 1 is presented in Fig. 5.

Conclusion
In this work, we obtained an approximate solution for different second order initial and boundary
value problems: the Van der Pol Oscillator problem, the Bratu’s type problem, the Troeschs
problem, and nonlinear system of BVP. Besides, we presented a comparison between the exact
solution, the proposed solution, and other approximations reported in the literature.
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