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Abstract 

This study examines the dynamical changes produced by a complex time-dependent rF B1(t) 
magnetic field in an initially unperturbed magnetic resonance system. The analysis uses the Green's 
function algorithm as a tool to solve the transverse component of the time-dependent Bloch NMR 
equations with complex rF B1(t) field. The time development of the system is studied in the Hersenberg 
picture in which the operators are subject to unitary transformation as the applied rF B1(t) field changes 
the state of the NMR system from its initial ground state into another coherent state. The detailed features 
of the rF B1(t) field essentially affect the evolution of the state  during its application. The state of the 
system after the complete cessation of the radio-frequency field is determined exclusively by a Fourier 
component which is in resonance with the NMR system. The unitary operator allows us to determine all 
the physically relevant information about the system in terms of a NMR relaxation parameter. 
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INTRODUCTION 

 

Many techniques in magnetic resonance have been analyzed based on different classical 
approaches [1-6]. While such novel approaches are very useful and provide the present 
innovations, it is necessary to have recourse to the Green-functional analysis of the time 
dependent Bloch NMR equation to fully understand the physics of nuclear magnetic resonance.  
Magnetic resonance is a process that should be treated analytically in terms of density matrix 
calculations for possible NMR pulse experiments. Fortunately the coupling of the nuclear spins 
mutually and with surrounding matter is weak. This allows a classical treatment on the basis of 
the Bloch NMR equations extended to the terms describing the relaxation in a phenomenological 
way. In this presentation we have studied the dynamics of the Bloch NMR equations to explore 
how the interaction of a complex  rf B1 field with certain nuclei leads  among others to the 
detailed  feature of density matrix calculations for the simulation of the effect of rF pulses, J-
coupling and precession in a magnetic field variable in space. 
 
Over the years, the density matrix formalism has been developed to suitably simulate the 
behavior of two spins system of different nuclei when a pulse sequence is applied. These may be 
very useful to simulate the effect of rF pulses, J-coupling and precession in a magnetic field 
variable in space. Quite a number of computer programs of sophisticated versions have been 
written to deal with such simulations [7-16]. It may be appreciated that these several computer 
programs have contributed greatly to the understanding of NMR experiments. Some of the 
drawbacks of these mathematical packages are the fact that the user cannot include relaxation 
parameters and the program execution may take a considerable long time if the pulse sequences 
involved are long. 
 
Therefore, there is a need to develop a mathematical algorithm for better understanding of the 
properties of magnetic resonance so that the design of the best mathematical package for the 
calculations of the effects of pulse sequences on spins exactly can be achieved without critical 
drawbacks. This need can be satisfied by solving the transverse component of time dependent 
Bloch NMR flow equations because of the fundamental role the Bloch equations play in the 
analysis of the properties of Magnetic Resonance Imaging (MRI). In this work, we choose the 
Green's function approach to solve the time-dependent Bloch NMR equation, because it has 
proved very useful even in many similar but more difficult problems. 
 

MATHEMATICAL METHOD 
 
For this investigation, we assumed that resonance condition exists at Larmor frequency  

o
f  =   B -  = 0γ ω  

The NMR signal is the emf induced by the precessing transverse magnetization, My. My results from 
the combined effect of the static magnetic field Bo and the radiofrequency field rF B1(t), on blood 
spins. The following are made 

(i) The excitor coil is fixed and the detector coil overlaps coaxially in a cross coil mode with 
the excitor coil and is movable axially.  
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(ii) The detector coil length, LD, is greater than the excitor coil length.  
(iii) It is further assumed that resonance condition exists within the excitor as well as the 

detector coils. 
(iv) Spins are magnetized by the static Bo field to an equilibrium magnetization, Mo, before 

entering the excitor coil.  
The z axis in the rotating frame coincides with the laboratory Z axis; the x axis makes an angle `ωt' 
at any instant of time 't' with laboratory X axis. X=0 position could be such that the transverse 
magnetic field at the end of the detector coil is negligible. 
The following symbols are defined;  γ denotes the gyromagnetic ratio of the spins; ω/2π is the rF 
excitation frequency, fo/γ is the off- resonance field in the rotating frame of reference and T2 is 
the spin-spin relaxation time. The time dependent transverse magnetization My, of the Bloch 
NMR equations is given by [1-6]  

2
1 )(

T

M
tBM

dt

dM y

o

y −=γ   (1) 

In this application, we shall be interested in the dynamical, changes produced by the complex 
time dependent rF B1 (t) magnetic field in an initially unperturbed magnetic resonance system. 
We assumed that outside the time interval t1  < t  < t2, the Hamiltonian H, is defined by the time 
dependent Bloch NMR equation and that the (disturbance) rF B1(t) ≠0 is applied only during a 
finite time interval t1  < t  < t2. The time development of the system is conveniently studied in the 
Hersenberg picture in which the operators are subject to a unitary transformation as they change 
from the initial regime before t1 to a final regime after t2. The relevant commutation relations for 
My and My

⊕, taken at equal time, are defined as  

1)](),([ =⊕
tMtM yy  

Equation (1) is the equation of motion for the transverse magnetization My(t). 
A Green's function appropriate to equation (1) is a solution of the equation 

)()(1)(

2

ttttG
Tdt

ttdG ′−=′−+
′− δ  (2) 

because such a function permits us to write a particular solution of equation (1) as 

∫
∞

∞−

′′′−= tdtBttGMtM oy )()()( 1γ   (3a) 

where δ is a delta function.  

Obviously, for t ≠ t' the Green's function is proportional to 2

)(
T

tt

e

′−
−

, but at t = t' there is a 
discontinuity. By integrating equation (2) over an interval which includes t', we derive the 
condition 

1)()([lim
0

=−−+
→

λλ
λ

GG  (3b) 

for λ > 0 
Two particular Green's functions are useful: 

2

)(

)()( T

tt

R ettttG
′−

−′−=′− η  (4) 
and 
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η δ( ) ( ' ) ' {t t dt
t

t

= =
−∞

∞

>

<

∫ 1

0

0

0

2

)(

)()( T

tt

A ettttG
′−

−−′=′− η  (5) 
In addition to the delta function, it is convenient to introduce the unit step function η(t) defined 
by 

 (6) 
 

Equations (4) and (5) are known as the retarded and advanced Green’s functions, respectively.  
If we denote by My(in)(t) and My(out)(t) those solutions of the homogenous equation  

which coincide with the solution My(t) of equation (1) for t > t1 and t > t2 respectively, we can 
write 

∫
+∞

∞−

′′′−+= tdtBttGMtMtM Roinyy )()()()( 1)( γ   (7) 

∫
∞−

′−
−

′′+=
t

T

tt

oiny tdtBeMtM )()( 1

)(

)(
2γ  

Or, equivalently  

∫
+∞

∞−

′′′−+= tdtBttGMtMtM Aooutyy )()()()( 1)( γ  (8) 

∫
+∞ ′−

−
′′−=

t

T

tt

oouty tdtBeMtM )()( 1

)(

)(
2γ  

By equating the right-hand sides of equations (7) and (8), we obtain the relation 

∫
+∞

∞−

′−
−

′′+= tdtBeMtMtM
T

tt

oinyouty )()()( 1

)(

)()(
2γ  (9) 

The free operators My(in) and My(out) have the simple time dependence 

2

)(

)()(
T

tt

inyiny eMM

′−
−

=  

2

)(

)()(
T

tt

outyouty eMM

′−
−

=  

Hence, from equation (9), we get  
( )20)()( * TgMMM inyouty γ+=  (10) 

where 

∫
+∞

∞−

∗
′−

−
′′= tdtBeTg

T

tt

)()( 1

)(

2
2

 

is the Fourier transform of the radiofrequency field B1(t). We now seek to determine the unitary 
operator S which transforms My(in) into My(out) such that  

dM t

dt T
M t

y

y

( )
( )+ =

1
0

2
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SMSM inyouty )()(
⊕=  (11) 

The operator S provides the vital link between the description of the NMR system before t1 and 
after t2. The operator S can be determined quite easily if we note the simple identity 

ααααα +=
⊗⊕⊗⊕ −=++−

y

MM

y

MM
MeMe yyyy   (12) 

for any complex number α.  
Comparison of equations (10), (11) and (12) shows that the unitary transformation we seek is  

)exp( yy MMS ⊗⊕ −= αα  

with 
)( 2TgM o

∗= γα  (13) 
We note that 

⊕⊕
+∞

∞−

+=+∫ )(2
*

)(2)(1)(
*

1 )()()]()()()([ inyinyinyiny MTgMTgdttMtBtMtB  (14a) 

Hence, we may express S as  

dttMtBtMtBS inyiny )]()()()([exp )(1)(1
⊕

∞

∞−
∫ +=  (14b) 

An equivalent expression for S is obtained by replacing My(in) and M⊕
y(in) by My(out) and M⊕

y(out). 
The operator S allows us to determine all the physically relevant information about the NMR 
system after time t2 from the knowledge of its conditions before t1. The simplest initial condition 
assumes that the system is in the ground state of Hamiltonian Hin, so that its energy before the 
onset of rF field is a minimum. 
 

COHERENT STATES 

 
An intriguing consequence of the formalism can be read off equation (10) if it is applied to the 
state 

outin
S 00 =  

This vector satisfies the relation 

ininoutyM 00)( α=  (15) 

showing that |0>in is an eigenvector of My(out) with eigenvalue of α. Since My is not a normal 
operator, its eigenvectors are not subject to any orthogonality requirement, and since g(T2) is 
arbitrary, any complex number is an allowed eigenvalue of My. From equation (15) it follows 
immediately that 

inoutyininoutyininoutyoutyin MMMM 000000 )()()()(
⊕⊕ =  (16) 

These special states are called Coherent States. Further insight is gained if we construct the time-
dependent states vector in the Schrodinger picture for t > t2. From equation (11) it follows that for 
all t  

StMStM inyouty )()( )()(
⊕=  (17a) 
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since both My(out)(t) and My(in)(t) depend on the time through the same factor 2T

t

e
−

.  
We can write equation (17a) in term of the ground state Hamiltonian Hin, as 

SeMeStM
tHM

iny

tHM

outy
inoino γγ

)()( )( −⊕=  (17b) 

If we choose the initial time 0 to precede and the final time t to follow the external perturbation, 0 
< t1 < t2 < t , we may then identify My(in) =My(0) and My(out)(t) = My(t) and conclude that the time 
development operator is (except for a constant phase factor)  

SetT
tHM inoγ=)0,(  

The Schrödinger operators My and My
⊕ may be equated with the Heisenberg operators My(t) and 

My
⊕(t) evaluated at t = 0. Hence, the notation My = My(0) = My(in)  is appropriate.  

For times t > t2 the state vector is given by 
)0()( ψψ γ

Set
tHM ino=   (18) 

 where Ho is the unperturbed Hamiltonian. If the initial state is the ground state,  
0)0( =ψ , 

after the rF field is terminated the state develops in time as 

0)exp()( 2

2

2

2

)(

T

t

y

T

t

eMet
−

⊕

+
−

= αψ

α

 (19) 

 
UNITARY TRANSFORMATION 

 

If the state of the NMR system is described by ψ and if the system admits rotations as symmetry 
operations, a particular rotation R produces a new state ψ′, related to ψ by a unitary 
transformation SR:  

ψψ RS=′  (20) 
Three rotations mx, my, mz are said to be the Cartesian components of a vector operator My if 
under every rotation, the expectation values transforms like the components of a vector. It is 
required of a vector operator that for any ψ, the old and new expectation values My may be 
related by 

)3,2,1(),(),(
3

1

==′′ ∑
=

imRm
j

jiji ψψψψ  (21) 

where Rij represents the real orthogonal matrix which characterizes the rotation of the Cartesian 
coordinates x, y, z. It follows that a rotation about the z-axis by an angle θ would, according to 
the rules of analytical geometry, be written as 

 
The matrices R constitute an irreducible representation of the rotation group. Substituting ψ′ from 
equation (20) into equation (21) taking note that the resulting relation should hold for arbitrary 
state ψ, we obtain the condition 

R =
−⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cos sin
sin cos

θ θ
θ θ

0
0

0 0 1 (22) 
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∑
=

⊕ =
3

1j

jijRiR mRSmS  (23) 

as the fundamental criterion for whether My is a vector or not. A necessary and sufficient 
condition for a vector operator can be derived by applying equation (23) to the special case of an 
infinitesimal rotation. For such a rotation, R is very close to the identity matrix, and SR is very 
close to the identify operator.  We can write 

ijijijR εσ +=  (24) 

where σ and ε are vector operator and angle of rotation respectively.  Applying the orthogonality 
of the matrix and setting ε12 = - εx, ε23 = - εz and ε31 = - εy, we can write for the infinitesimal 
rotation 

For the case of an infinitesimal rotation about the z-axis this agrees with equation (22) if we set θ 
= εz. Generally, the rotation shown in equation (25) takes place in a plane perpendicular to the 
vector ε (εx, εy, εz): |ε| is the angle of rotation, and the rotation is such that it forms a right-
handed screw advancing in the direction of  ε. The unitary operator which corresponds to such a 
rotation is  

00R MJNMS γεγ ++= .1   (26) 

where N = θ/ε represents infinitesimal rotations and J is the operator which represents the total 
angular momentum of the NMR system. If we substitute equations (24) and (26) into equation 
(23), we obtain 

By comparing the two sides of equation (27) to first order in ε, we obtain the relation 

o

y

xzzx

o

z
xyyx

M

m
mJJm

M

m
mJJm

γγ
−=−=− ,   (28a) 

o

z
yxxy

o

x

yzzy
M

m
mJJm

M

m
mJJm

γγ
−=−=− ,   (28b) 

o

x
zyyz

o

y

zxxz
M

m
mJJm

M

m
mJJm

γγ
−=−=− ,   (28c) 

and 

For the infinitesimal rotations these commutation relations are equivalent to the condition 
expressed in equation (23). They are also sufficient to ensure that equation (23) is satisfied for 
finite rotations. If the condition in equation (23) holds for two different rotations R and U, we can 
write 

R

z y

z x

y x

=

−

−
− −

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

1

ε ε
ε ε
ε ε

(25) 

( . ) ( . )1 10 0− + = + +

= −

γ ε γ ε ε ε
ε ε

M J m M J m m m

m m m

i i i j j ik k

i k j j k

(29) m J J m m J J m m J J mx x x x y y y y z z z z− = − = − = 0

(27) 
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∑

∑

=

=

⊕

⊕

j

jijUiU

j

jijRiR

mUSmS

and

mRSmS

 

It follows that for the compound rotation RU 

R

j

jijRRUiURRUiRU SmUSSSmSSSmS ∑⊕⊕⊕⊕ ==  

Hence, if the condition in equation (23) holds for all infinitesimal rotations, as is guaranteed by 
the commutation relations in equations (27) and (29), then equation (23) will also hold for any 
finite rotation. 
If J is the operator which represents the total angular momentum of the NMR system about a 
given origin 0, then the operators D(u,dθ) and D(u, θ) which represent an infinitesimal rotation 
dθ of the system, and a finite rotation θ, respectively, about an axis through 0 in the direction of 
the unit vector u, can be written in the form 
D(u,dθ) = 1 - idθ(J.u) ; D(u, θ) = exp(-iθ(J.u) (30) 
For a rotation R(α,β,ζ,) about the origin, given by the Euler angles α, β, ξ, we have 

zyx JiJiJi
eeeD ξβαξβα −−−=),,(  (31a) 

The operator D(α, β, ξ) has the following matrix representation 
mij

mm

mij

mm edemjBjmD x ′−
′

−
′ =′≡ ξα βξβαξβα )(),,(),,( )()(  (31b) 

where  
mjejmd yJij

mm
′= −

′
ββ )()(   (32) 

are the coefficients. 
 
DENSITY MATRIX CALCULATIONS 

 
Our goal, the construction of S corresponding to a given rotation R, will be considerably 
facilitated if we consider infinitesimal rotations, and thus for a small rotation we write to a first 
approximation the first two terms in a Taylor's series 
S = 1 - i/2 ε n. σ (33) 
 where n is the axis of rotation, ε the angle of rotation about the axis and σ  represents three 
constant matrices σx, σy, σz whose detailed structure is yet to be determined. The factor i/2 is 
introduced so that σ will have certain simple and desirable properties. In particular, the imaginary 
coefficient ensures that, if S is to be unitary to first order in ε, then σ must be Hermitian. If we 
carry out N = θ/ε infinitesimal rotations in succession, we get for the final product 
SR ≈ [1 – (iθ/2N)  n. σ]

N 
In the limit N → ∞ 
SR = exp(– iθ/2  n. σ) (34) 
We consider the special case of an infinitesimal rotation about the z-axis. This implies 
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and 

z

i
S εσ

2
1−=  (35b) 

Hence, by substituting equation (32) into (23), we obtain the necessary conditions 

yzxxz immm 2=− σσ  (36a) 

xzyyz immm 2−=− σσ    (36b) 

0=− zzzz mm σσ           (36c) 
Similarly, rotation about x and y-axis gives the rotations 

zxyyx immm 2=− σσ       (37a) 

yxzzx immm 2−=− δδ  (37b) 

0=− xxxx mm σσ    (37c) 
and 

xyzzy immm 2=− σσ   (38a) 

zyxxy immm 2−=− σσ   (38b) 

0=− yyyy mm σσ   (38c) 

Since σ is a vector operator, we may make the identification 

My = σ (39) 
 in equations (36)-(38). In this way we obtain a set of fundamental commutation relations which 
can be combined symbolically in the system equation 
σ × σ = 2iσ (40) 
equation (39) encompasses the restrictions which the δ matrices must obey if matrices of the form 
expressed in equation (34) are to represent rotations. The matrices σx, σy, and σz are completely 
determined by the commutation relations and by the selection of the eigen spinors of σx as the 
basis spinors. σx, σy, and σz are the Pauli spin matrices. The spin matrices can be represented as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

10

01

2
1,

0

0

2
1,

01

10

2
1

zzyyxx m
i

i

mm σσσ  (41) 

We can obtain the eigenvectors 

xm mof

B

A

x
′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′φ  

and 

ym mof

D

C

y
′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′φ  

R =
−⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0
1 0

0 0 1

ε
ε (35a) 
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with eigenvalues m′x and m′y  by solving the matrix eigenvalue equation: 

x

x

B

A

m

B

A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
′=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

01

10

2
1   (42a) 

x

y

D

C

m

D

C

i

i

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
′=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

0

0

2
1  (42b) 

The solutions are 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+= ′′

1

1

2
1

2
1,

1

1

2
1

2
1

11 βα φφ i

m

i

m ee
xx

  (43a) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+= ′′

i

e

i

e
i

m

i

m yy

1

2
1

2
1,

1

2
1

2
1

22 βα φφ   (43b) 

and similarly,  for mz, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+= ′′

1

0

2
1

2
1,

0

1

2
1

2
1

33 βα φφ i

m

i

m ee
zz

  (43c) 

where the αMy and the βMy are arbitrary phase angles. 
If  My is defined as a matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

01

10

2
β

yM , 

we can determine the matrix elements of the rotation operator for states having j = ½ directly 
from equation (31b), where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−= ++

01

10
)

2
()1(

10

01
)

2
()1( 1122 nnn

y

nnn

y MandM
ββ  (44) 

and n is an integer. Since, in the [J2, Jz] representation, iβJy = My, we have 
 

=′−
mjejm yJiβ  

 
 
 
and 

M′    =      1/2          -1/2   M 
 
 1/2 
 
 
-1/2 

cosβ/2       -sinβ/2 

sinβ/2        cosβ/2 

(45) 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=
−

−−−

ξαξα

ξαξα

ββ

ββ

ξβα
)

2
()

2
()

2
()

2
(

)
2

()
2

()
2

()
2

(

2
1

)
2

cos()
2

sin(

)
2

sin()
2

cos(
),,(

iiii

iiii

iiii

iiii

eeee

eeee

D  (46) 

 

CONCLUSION 

 

In this work, we have presented a Green's function approach to the solution of the time dependent 
NMR flow equation where the rf B1(t) field is treated as a complex valued function. The Fourier 
transform of the rf B1

*(t) gives an arbitrary function of the spin-spin relaxation parameter g(T2). 
This implies that any complex number is an allowed eigenvalue of the transverse magnetization, 
My. We determine the special states called coherent states for the system. It is very clear that the 
equilibrium magnetization Mo is complex and has a quantum mechanical value. This ensures a 
sufficient condition to be satisfied for finite rotations of My. It is easy to check from the analysis 
that the two eigenvectors of each of the operators mx, my and mz are normal, mutually orthogonal, 
and form a complex set, i.e. any arbitrary eigenvector can be written as a linear combination of 
the members of any one of these pairs of eigenvectors. The square moduli of the coefficients of 
such a linear combination give the probability of obtaining the particular value ± 1/2 of m'x of m'y 
of m'z, according to the pair of eigenvector used. Thus, for example, since z - axis and the x - axis 
are perpendicular to each other, the probability of finding m'z = ± 1/2 if a system is known to be 
in an eigenstate of mx is equal to 1/2. The solutions to the time dependent NMR Bloch equation 
as presented by the Green's function approach have allowed us the use of general principle of 
semi classical mechanics to explore very useful information which can be invaluable in the 
design of a mathematical package which can include relaxation and other important NMR 
parameters.  
Additionally, it may be noteworthy to mention that, the effects of a complex rf B1(t) field has 
deliberately, perhaps unintentionally been omitted in the literature. The actual  relation of the 
density matrix calculations as discussed in an earlier study [16] to the NMR flow analysis can be 
more appreciated by solving the time dependent Bloch NMR equation with complex rf B1(t) field 
via the Green's function algorithm as discussed in this study. 
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