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Abstract

In wireless sensor networks (WSNs), a large number of tiny, inexpensive and computable sensor
nodes are usually deployed randomly to monitor one or more physical phenomena. The sensor nodes
collect and process the sensed data and send the data to the sink wirelessly. However, WSNs have
limitations such as tight energy budgets, limited radio bandwidth, limited memory, limited
computational capability, limited packet size and high packet loss rates. These constrains are
important issues when designing compression schemes for WSNs. Data compression is one
important tool that can maximize data return over unreliable and low rate radio links. Thus, due to
the unreliable nature of the radio links in WSNs that result in packet losses, it is therefore very critical
to propose a data compression scheme that is very robust to packet losses. In this paper, we propose a
block based approach which allows each block of source data to be encoded independently to ensure
unique decodability at the sink, thus leading to an efficient and robust lossless compression scheme
for WSNs. Simulation results using various real-world sensor datasets show that a maximum
percentage energy saving of 29.29% was achieved by our proposed scheme. In addition, although
the compression performance of our proposed scheme is comparable with those of LEC, it is
however 200% as efficientas S-LZW.

Keywords: Energy Efficiency, Huffman Coding, Lossless Compression, Signal Processing,
Wireless Sensor Networks.

1. Introduction

Wireless sensor networks (WSNs) is a
cooperative network of small sized,
inexpensive, computable and battery-operated
wireless sensor nodes which are usually
deployed randomly in large numbers to monitor
one or more phenomena (Liao & Yang, 2012
Villasetal,2012).

The nodes monitor their surroundings for local
data and forward the gathered data to the sink
node using direct or multi-hop communication.

The sink node then processes all the received

data from several source nodes and reports them
to a monitoring facility. This network
architecture allows a number of applications in
areas such as industrial, environmental, military
and medical (Kolo, Shanmugam, Lim, Ang, &
Seng,2013; Villasetal.,2012).

WSNs are highly energy-constrained because
the sensor nodes are battery-operated. Other
limitations of WSNs include limited memory,
limited radio bandwidth, limited computational
capability, high packet loss rates and limited

packet size. Data communication among sensor

Volume 2 No. 1 - 2015



AN EFFICIENT AND ROBUST LOSSLESS COMPRESSION SCHEME FOR WIRELESS SENSOR NETWORKS

nodes is the main source of energy consumption
in WSNs. To achieve energy conservation, the
data rate should be aggressively reduced. The
amount of energy required for transmission can
be greatly minimized if the volume of data to be
transmitted is reduced. The reduction in data
size will further lead to considerable savings in
power. Research shows, saving a byte of data
through data compression has been shown to
worth spending between four thousand
(Chipcon CC2420) to two million (MaxStream
XTend) cycles of computation (Sadler &
Martonosi, 2006.Therefore, compressing data
before transmission is one of the major
strategies for energy-efficient WSNs and this
saving would directly translate into lifetime
extension for the network nodes
(Schoellhammer, Greenstein, Osterweil,
Wimbrow, & Estrin, 2004. In addition, the
reduction in data size will further lead to reduce
network load which lead to fewer collisions and
retransmissions.

In general, data compression techniques can be
divided into two main categories, lossless and
lossy. In the lossless compression techniques,
original data can be retained exactly without any
loss but on the expense of compression ratio and
system complexity. Examples of lossless data
compression techniques are Run Length
Encoding (RLE), Huffman coding, arithmetic
coding and Lempel-Ziv (LZ) coding. On the
other hand, lossy data compression permits a
certain degree of inaccuracy in the
reconstructed data but the compression ratio
will be significantly high. Examples of lossy
compression techniques are prediction,

quantization, fitting, transform coding and

compressive sensing. Some compression
techniques may use combination of two or more
techniques such as encoders of multi media data
(Alsalaet & Ali, 2015; Wu, Tan, & Xiong, 2016.
Furthermore, many of the data compression
schemes proposed in the literature do not take
packet losses into consideration. Hence, those
compression schemes cannot perform well due
to the unreliable nature of the radio links in
WSNs. It is therefore very critical to propose a
data compression scheme that is very robust to
packet losses. In this paper, we propose An
Efficient and Robust Lossless Compression
Scheme (AERLCS) based on the basic LEC (F.
Marcelloni & Vecchin; 2009) for WSNs.
AERLCS is block-based; as such each block of
source data is independently encoded to ensure
unique decoding at the sink. The AERLCS is
simple and lightweight and very suitable for
resource-constrained WSNs.

The remaining part of this paper is divided into
the following sections: A review of past and
related works to the subject matter is presented
in section 2 while in section 3, a detailed
description of our proposed AERLCS WSNs is
presented. In section 4, we present a detailed
performance evaluation of AERLCS by
analyzing the obtained simulation results as
well as the results of comparison with the LEC
and S-LZW schemes. Finally, in section 5, we

present our conclusions.

Related Work

There exist two main categories of data
compression scheme in literature namely; (1)
distributed data compression schemes, and (ii)

local data compression schemes.
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Characteristically, the distributed data
compression approach exploits the high spatial
correlation in data from fixed sensors node in
dense networks with some of the main
techniques under this approach include
distributed source coding (DSC) (Chou,
Petrovic, & Ramchandran, 2003; Pradhan,
Kusuma, & Ramchandran, 2002), distributed
transform coding (DTC) (A Ciancio & Ortega,
2005; Alexandre Ciancio, Patem, Ortega, &
Krishnamachari, 2006), distributed source
modeling (DSM) (Predd, Kulkarni, & Poor,
2006; Xiao, Cui, Luo, & Goldsmith, 2006) and
compressed sensing (CS) (Donoho, 2006). The
distributed compression approach however
conserves energy at the expense of information
loss in the source data and for this reason will
notbe considered.

Conversely, the local data compression
approach which takes advantage of the temporal
correlation that exist in sampled sensor data to
perform its compression locally on each sensor
node will be considered. Some of the proposed
local data compression algorithms based on
temporal correlation in WSNs include: lossy
algorithms (Lightweight Temporal
Compression (LTC) (Schoellhamme et al.,
2004), K-RLE (Capo-Chichi, Guyennet, &
Friedt, 2009), Differential Pulse Code
Modulation-based Optimization (DPCM-
Optimization) (Francesco Marcelloni &
Vecchio, 2010); lossless algorithms (Sensor
node LZW (S-LZW) (Sadler & Martonosi,
2006), Lossless Entropy Compression (LEC)
(F. Marcelloni & Vecchio, 2009) Modified
Adaptive Huffman Compression Scheme,
(Tharini & Randan, 2009), Two-Modal

Transmission (TMT) (Liang & Peng, 2010),
modified Lossless Entropy Compression
(mLEC) (Kolo, Ang, Seng & Prabaharan,
2013). The precision required by some
application domains demands sensor nodes
with very high accuracy that cannot tolerate
measured data being corrupted by the
compression process. Thus, this research is
directed to focus on lossless local data
compression algorithms. (Sadler & Martonosi,
2006) introduced a lossless compression
algorithm called S-LZW which is an adapted
version of LZW (Welch, 1984) designed
specifically for resource constrained sensor
nodes. S-LZW 1is a dictionary-based low
complexity lossless compression algorithm that
divides the uncompressed input bit streams into
fixed size blocks of 528 bytes (two flash pages)
and compresses each block separately. The
dictionary structure allows the algorithm to
adapt to changes in the input and to take
advantage of repetition in the sensed data.
However, the algorithm suffers from the
growing dictionary problem and its
compression efficiency still needs to be
improved. Also, it is less robust to packet losses
because it encodes 528 bytes of source data into
10 or more dependent packets. Hence, once a
packet is lost in transmission, the remaining
packets following in the same group cannot be
decoded. (F. Marce;;pmi & Vecchio, 2009),
introduced the Huffman coding into wireless
sensor nodes. Their simple lossless entropy
compression (LEC) algorithm which was based
on static Huffman coding, exploring the
temporal correlation that exist in sensor data to

compute a compressed version using an

Volume 2 No. 1 - 2015



AN EFFICIENT AND ROBUST LOSSLESS COMPRESSION SCHEME FOR WIRELESS SENSOR NETWORKS

extended coding table that was used in the
baseline JPEG algorithm for compressing the
DC coefficients (Pennebaker & Mitchell, 1992).
The algorithm was particularly suitable for
computational and memory resource
constrained sensor nodes. The algorithm gives
good compression performance. However, one
fundamental drawback of the LEC scheme is the
interdependence of one packet on the other. As
such, once a packet is lost in transmission, all
other packets following cannot be decoded.
Furthermore, a modified version of the classical
adaptive Huffman coding was proposed in
(Tharini & Ranjan, 2009). The modified
algorithm does not require prior knowledge of
the statistics of the source data and compression
is performed adaptively based on the temporal
correlation that exists in the source data. The
drawback of this algorithm is that it is
computationally intensive and it is not robust to
packet losses. In lieu of the aforementioned
draws backs in the earlier algorithms, the
proposed AERLCS offers solutions to the raised
shortcomings. Being a modified version of
LEC, the proposed algorithm requires low
computational resource and gives good
compression performance. The AERLCS also
encodes each block of source data
independently, thereby being very robust to

packet losses.

The AERLCS Algorithm

The proposed efficient and robust lossless
compression scheme (AERLCS) is described in
details in this section. The scheme is formed
from the basic LEC (F. Marcelloni & Vecchio,
2009) coding method for WSNs. Although the

LEC scheme is simple, its compression
performance is good and far better than earlier
schemes like S-LZW (Sadler & Martonosi,
the

interdependence of packets on themselves is

2006) among others. However,
one of the main fundamental drawbacks of the
LEC. As such, once a packet is lost in
transmission, other packets following cannot be
decoded. Thus, given the nature of unreliable
wireless communication channels of WSNSs, the
proposed modified version of the LEC provides
the flexibility of encoding blocks of source data
independently making it significantly more
robust to packet losses than LEC. Since wireless
sensor nodes transmit data in packets, AERLCS
explores this inherent transmission mode by
compression source data in blocks. AERLCS
also enjoys the high temporal correlation that
typically exists between consecutive sensed

samples to lossless compress data.

Prediction

The proposed scheme depends on the principle
of entropy coding of exponentially distributed
source. In practice, most of the sources
encountered are not exponentially distributed;
as such the original sources have to be
preprocessed to ensure that they fit exponential
distribution. The principle of predictive coding
is applied owing to the fact that predictive errors
are often modeled using exponential
distribution. To ensure a corresponding low
level computation to the relatively to the low
computational power WSN, we have adopted
the use of a linear prediction model that is
limited to taking the differences between

consecutive sampled data. For our intended
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application which is the compression of
environmental data such as temperature and
relative humidity, the prediction model proves
to be simple and efficient. In addition, it's also
ensures that the computational complexity of
our compression scheme is as low as possible.

Thus, the predicted sample
> — 0]
Xi = Xig

That is, the predicted sample is equal to the last
observed sample. The error term (residue) is
then calculated by subtracting the predicted
sample from the current sample. Hence, the

residue d, isthe difference.
_ o ()
Wherei=1,2,3...
In other to compute the firstresidue we assume
that
x,=0 3)

Equation (3) ensures that the first sample of
each block of residues is the reference sample
(original sample value). The residues 4 are now

exponentially distributed.

Entropy Coding

In order to achieve energy conservation and also
to maximize data return over unreliable and low
rate radio links, we propose to implement an
efficient and robust lossless compression
algorithm that compresses blocks of sampled
data independently at a time using the basic
LEC encoder. Our proposed algorithm uses the
basic entropy encoder proposed in Marcelloni &
Vecchio, (2009) with its coding table optimized
for WSNs sensed data to encode each block

independently and can be applied to multiple
data types. The encoder performs compression
losslessly by encoding differences d, more
compactly in accordance with the pseudo-code
described in Figure 1. Each d, is represented as a

bitsequence ¢, composed of two parts /2, and /,

(¢=h*1).
)= (Index)|, @
w
" o ) )
el A 420
Index = {(2;, _1)+ d, d. <0 (6)

Equation (6) returns the index position of each &,
within its group. (Index)|,, denotes the binary
representation of /ndex over b, bits. b, is the
category (group number) of d, It is also the
number of lower order bits needed to encode the
value of d, Note thatifd, =0, /. is not represented.
Thus, at that instance, ¢, = h. Once c, is
generated, it is appended to the bit stream which
forms the compressed version of the source
data.
To efficiently and independently encode block
of n source samples x, at a time using our
proposed algorithm the under listed procedural
steps is followed;
1. Using equation (2) and (3), convert the
block of n source samples ¥; to blocks of
n residue samples 4 Note that the first
residual sample is the reference sample.
2. Encode the blocks of n residue samples
using the basic LEC entropy encoder

with the optimized coding table (Table
1).

3. Send the encoded bit-stream to the sink.
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Although our modification is simple, it ensures
that each packet is independently decodable.
That is, it provides significant robustness to

packets losses.

encode(di, TABLE)

7 di is the current residue value

/ TABLE is the variable length Huffman codes used in encoding

/ bi is the category (group number) of di

/ bi is also the number of lower order bits needed to encode the value of di
/ ci is the encoded bitstream of di

/ hi is the variable -length Huffman code that codifies the category (group) of di
/1i is the variable-length integer code that codifies the index position of di
/  within its group (category)

/* denotes concatenation

/ (Index)|bi denotes the binary representation of index over bi bits

/ compute di category
IF di = 0 THEN
SET bi TO 0
ELSE
SET bi TO Glogx(|di[)?
ENDIF
/ extract hi the variable length Huffman code from TABLE
SET hi TO TABLE [bi]
7 build ci
IF bi = 0 THEN
/1i is not needed
SET ci TO hi
ELSE
J/ build 1i
SET i TO (Index )|bi
/ build ci
SET ¢i TO hi * i
ENDIF
RETURN ci

Figure 1 The pseudo-code of the encode
algorithm

Table 1 Optimized Huffman Coding Table

b; h; d;
0 100 0
1 110 -1,+1
2 00 -3,-2,+2,+3
3 111 -7, -4 14, T
4 101 -15,..., -8,+8,...,+15
5 010 -31,..., -16,+16, .. .,+31
6 0111 -63,..., -32,+32,...,+63
7 01101 -127,...,-64,+64, .. ,+127
8 011001 -255,..., - 128,+128, .. .,+255
9 0110001 -511,...,-256,+256, .. .,+511
10 01100001 -1023,...,-512,+512,...,+1023
11 011000001 -2047,..., -1024,+1024, . . .,+2047
12 01100000000  -4095, ... ,-2048,+2048, . . .,+4095
13 01100000001 -8191,..., -4096,+4096, . . .,+8191
14 01100000010  -16383,...,-8192,+8192, ..
., +16383

Simulations and Analysis

To demonstrate the effectiveness of our
proposed algorithm was tested against various
real-world environmental datasets
(Temperature and relative humidity datasets

were considered). The performance evaluation

of the algorithm is computed by using
compression rate (cr) which is defined as the
ratio of the number of bits to represent the
compressed data to the number of samples of the
original data. The compression rate (Cr) is
defined in Equation 7 and the smaller the value
of the compression rate, the better the
compression performance of the compression

algorithm.
_CS
cr= bits per sample (7)

Where CS'is the compressed data size in bits and

NS is the number of samples of the original data

Data Sets

Real-world environmental monitoring WSN
data sets from Sensor Scope (“Sensor Scope
deployments homepage.” 2011) were used in
our simulations. The relative humidity and
temperature measurements from three Sensor
Scope deployments: Le Geénépi Deployment,
HES-SO Fish Net Deployment and LUCE
Deployment were used. Publicly accessible data
sets were used to make the comparison as fair as
possible. These deployments use a TinyNode
node (“TinyNode homepage,”) which
comprises of a TI MSP430 microcontroller, a
Xemics XE1205 radio and a Sensirion SHT75
sensor module (“Sensirion homepage,” 2011).
Both the relative humidity and temperature
sensors are connected to a 14 bit analog to
digital converter (ADC). The default
measurement resolution for raw relative
humidity (raw_h) and raw temperature (raw_t)
is 12 bits and 14 bits respectively. Each ADC

output raw_h and raw t are converted into
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measure 4 and ¢ in percentage and degree
Celsius respectively as described in (“Sensirion
homepage,” 2011). The data sets that are
published on SensorScope deployments
correspond to physical measures /4 and . But the
compression algorithms work on raw_h and
raw_t. Therefore, before applying the
compression algorithm, the physical measures /
and ¢ are converted to raw_h and raw_t by using
the inverted versions of the conversion
functions in (“Sensirion homepage,” 2011).
Table 2 summarizes the main characteristics of
the datasets. We compute the information
entropy H of the original data sets and the
information entropy H, of the preprocessed
samples of each data sets using equation (8) and
(9) respectively. R is the number of possible
values of x; (ord, ) and p(x; ) (or p(d,) is the
probability mass function of x, (ord,) These are
all recorded in Table 3. By preprocessing the
data sets as can be seen from Table 3, the
compressibility of the data sets have been
enhanced since information entropy represents
an absolute limit on the best possible lossless
compression of any source, under certain
constraints (i.e. under the assumption that the

source is amemoryless source).

H ==Y px)log, px)  (8)

H,==3 p(d,)log, p(d,) )

Table 2 Main characteristic of the datasets

Time interval

Node Symbolic ~ Number of
Deployment name D name samples
LUCE 84 LU84 64913

From day To day

23-Nov-06 17-Dec-06
09-Aug-07
04-Sep-07

HES-SO FishNet 101 FNI101 12652
Le Génépi 20 LG20 21523

31-Aug-07
03-Oct-07

Table 3 Information entropy of the original and
the preprocessed samples of each data set

DATASET H H,y

LU84 TEMP 10.0677 4.0471
FN101TEMP 10.2609 5.0965
LG20 TEMP 10.2492 6.8178
LU84 RH 9.9156 5.7032
FN101RH 9.6070 5.7313
LG20 RH 10.7634 7.6052

Compression performance of our proposed
algorithm

In this section, the compression performance of
our proposed scheme using the six real-world
data sets discussed in section 4.1. For each data
set, using the improved coding table, the
compression performance of AERLCS is
computed for different value of n (block size)
using (7). Figure 2 shows the compression rate
vs. block size achieved by AERLCS for the six
real-world data sets. As evident from Figure 2,
the compression rate of AERLCS for each of the
six data sets decreases with respect to the
increase in the block size. For very small values
of n, high compression rates were obtained due
to high reference sample overhead cost incurred
that over weigh the compression benefits. In
fact, data expansion results at block size of 2 for
all the six test data sets. However, the
compressed bit rates obtained were significantly
low for block sizes in the range n = 48, this is
because the smaller the value of the
compression rate, the better the compression
performance of the compression algorithm.
Values of n (block size) beyond 96 results in less
improvement to the compression rate as evident
from Figure 2. Thus, for real-time and near real-

time operation using AERLCS, the block size n
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should be in the range 48 =n =96 for optimum
performance. It is observed that at the limits
(when the block size equals the size of each data
source), the compression performance of
AERLCS is better than that obtained by the
basic LEC algorithm. In addition, while the
basic LEC algorithm is not robust to packet
losses, our proposed scheme is very robust to
packet losses since it encodes each data block
independently.

Performance comparison between LEC coding
and our improved coding

To demonstrate the effectiveness of our
improved coding table, in this section compare
the compression performances obtained by
AERLCS with those of the LEC coding table.
For ease of comparison, the corresponding
figures of all the six data sets are on the same
plot as shown in Figure 3 (a-f). From the plots, it
can be seen that the compression rate
performance achieved using the AERLCS
(Improved) coding table is better than those
achieved using the LEC coding table for five out
of the six test data sets. The improved
performance is as a result of our optimization of
the coding table for environmental monitoring
data sets. The LEC coding table is optimized for
the compression of the DC coefficients of a
digital image (Pennebaker & Mitchell, 1992)
which are highly correlated.

16
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The improved (AERLCS) compression rate
performance achieved as a result of using our
improved coding table have help to offset to
some extend the performance degradation that
results due to reference sample overhead cost.
Thus, for real-time and near real-time operation,
the compression performance of AERLCS is
comparable with the basic LEC compression
performance. For delay-tolerant operation, our
proposed algorithm outperforms the basic LEC

algorithm.

Performance comparison with S-LZW
Algorithm

In this section, the evaluation of the
compression performance of AERLCS with S-
LZW algorithm (Sadler & Martonosi, 2006) for
WSNs is discussed. S-LZW is a dictionary-
based low complexity lossless compression
algorithm that divides the uncompressed input
bit streams into fixed size blocks of 528 bytes
(two flash pages) and compresses each block
separately. From S-LZW coding mechanism, it
is much less robust to packet losses than
AERLCS. Table 4 gives the compressed bit
rates that was achieved on all the six data sets by
the S-LZW algorithm with the following fixed
parameters: Mini-Cache Entries=32, Max
Dictionary Entries=512, Block Size=528 bytes,
and Dictionary Strategy=Frozen (Sadler &
Martonoso, 2006). From this fixed parameters,
it can be seen that S-LZW uses significantly
more memory space for its dictionary entries
and mini-cache entries than our proposed
algorithm. Also, the block size of 528 bytes
suggests that S-LZW can only be applied in
delay-tolerant applications while AERLCS can

be applied in both real-time and delay-tolerant
applications. To make the compression
performance comparison between AERLCS
and S-LZW as fair as possible, we compress
temperature and relative humidity data sets at
block size of 302 (14bits x 302 ~ 528bytes) and 352
(12bits x 352 = 528bytes) respectively using AERLCS.
These compression performances are also
recorded in Table 4. From the compression
results in Table 4, AERLCS is 151% to 203% as
efficient as S-LZW. The worst compression
performance of S-LZW is recorded when it is
used to compress the LG20RH data set. The
samples of the LG20RH data set are originally
represented by 12-bit and after compression by
S-LZW, the resulting compressed bit rate is
12.4915 bits/sample (i.e. data expansion
results). In addition, while S-LZW algorithm
suffers from the growing dictionary problem
AERLCS on the other hand requires only small
dictionary size (the size of the ADC) for its

coding operation.

Table 4. Performance comparison between S-
LZW and AERLCS in bits/sample at block size
of 528 bytes

DATASET S-LZW AERLCS
LU84 TEMP 8.1628 4.5940
FN101TEMP 11.1472 5.4742
LG20 TEMP 12.477 7.3847
LU84 RH 11.0012 5.8953
FN101RH 10.1956 6.1036
L.G20 RH 12.4915 8.2401

Complexity and Energy saving

In terms of algorithm complexity, AERLCS is
simple. When compared to the basic LEC
algorithm, AERLCS takes the same amount of

time to compress data and requires the same
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amount of memory. When compared to the S-
LZW, AERLCS requires much less memory. In,
Marcelloni & Vecchio, (2009),
assess the complexity of the basic LEC

in other to

algorithm, the authors execute the LEC
algorithm on Simlt-Arm simulator (“Simit-
ARM Simulator,” 2011) to compress the first
block of each data set that consist of 528 bytes.
They observed that on average, the LEC
algorithm executes: (i) 30549.25 instructions
per 528 bytes for the temperature data sets. (ii)
11.35 saved bit of
temperature data set. Thus, the LEC algorithm

instructions for each

and by extension AERLCS is simple and
lightweight. Exploiting this amount of work that
has already been done as stated above and since
our proposed scheme has the same complexity
(in time and space) with the LEC algorithm, we
therefore assume that AERLCS also executes
approximately 30549.25 instructions per 528
bytes for the temperature data sets (which
corresponds to the execution of on average
57.8584 instructions per bytes of the original
temperature data set).

For the energy saving calculations, we
considered the LU84 temperature data set. The
size of LU84 temperature data set is 64913 14-
bit samples. Next, we assume that the number of
instructions executed in compressing a byte by
the Simlt-Arm simulator corresponds to the
number of instructions executed by the Tmote
Sky when compressing a byte of data. In (Lane
& Campbell, 2006), the authors state that the
energy expended for the execution of
instructions depends on the memory address
mode of the instruction operands and on the type

of instructions. We therefore conclude that,

from the type of instruction used by AERLCS,
on average the energy consumed in executing
each instruction is 15 nJ (Lane & Camplell,
2006; F. Marcelloni & Vecchio, 2009) . Also,
for these calculations, considering the Cc2420

radio that is on-board the Tmote Sky motes from
Motelyv,

consumed for transmitting one byte is 32us and

the time spent and the current

17.4mA respectively. Table 5 list the essential

parameter used in our evaluation. Given N, , the

ins?

total number of instructions executed in
compressing the whole data setis

N7 — Nux NS x ADC

ms 8
Where N, , NS and ADC are as defined in Table

ins>

(10)

5. The computational energy in Joules
consumed in compressing the whole data set is

written as

E, =E, xNT

compute ins

(1D

Where E. is as defined in Table 5.

ms

), the fixed packet
payload length (s) in bytes is determined from

For a given block size (B

size.

the expression

B, xcr
S =
8

Note that, the Compression rate (cr) is a

(12)

function of B,

size

(see Figure 2) and is determined
by the compression algorithm.

Next, we determine the number of packets
needed to transmit the uncompressed data. This
is defined by

(13)

NS x ADC]

|
sx8

Similarly, we determine the number of packets

needed to transmit the compressed data. This is
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defined by

N})COIHPIESS ='r CS -'
sx8

(14)

Where CS'is the compressed data size in bits.

The energy consumed in transmitting one byte

ofdata (£, ) is defined by
Ebyte = I/cc X Ibyte X tbyte (1 5)

Thus, the energy consumed in transmitting one

packetis given as
E,=E, <L, (16)

Where £ =¢+s) is the length in bytes of the
transmitted packet. While / is the packet header
inbytes, s is the packet payload in bytes.

Next, we determine the energy consumed by the
radio in transmitting the uncompressed data.

This is given by the expression
E,. =E,xNF,

Traw raw

7)

Similarly, the energy consumed by the radio in
transmitting the compressed data is given by

E Tcompress = E P x N R‘ompress (1 8)
) 18 computed by
subtracting (11) and (18) from (17). That is

Thus, the energy saving (E

E_ =L

save Traw ( 1 9)

compute - Teompress
The percentage energy saving () is calculated
using the expression

n = Lue 100 (20)

Traw

Table 5 Essential Energy Saving Evaluation

Parameter
Par value
Size of LU84 temp data set (NVS) 64913 samples
Analog -to-Digital converter resolution (4DC) 14
Supply voltage (v..) 3V

The time it takes to transmit one byte of data (#s,.) | 32 us

The current drawn in active mode while

transmitting one byte of data (/5,..) 17.4 mA
Average energy consumed for the execution of
one instruction (£y,) 15n)

Number of instructions executed while
compressing one byte of data (V)

Block size (B;iz.)
Packet header length (%)

57.8584
2 - 480 samples

9 bytes

Block size, compression rate and packet
payload length are important parameters that
affect the percentage energy saving. In our
numerical simulations in MATLAB, using our
proposed scheme and varying the block size
from 2 to 480 samples, we determine the
compression rates. Next, using (10) to (20), we
compute the corresponding packet payload
lengths and the percentage energy savings with
respect to the energy consumed to transmit
uncompressed data. Figure 4 depicts the plot of
the percentage energy saving against the packet
payload length. The followings were observed
during the numerical simulations: (i) The
energy consumption per packet increases with
the increase in the packet payload length. This is
due to the increase in the packet length. (ii) The
energy consumption of the compressed data
packets decreases with the increase in the packet
payload length. This is partly due to the lower
overhead cost of larger packets and partly due to
lower compression rate and large packet size
that result in fewer number of packets. (iii) The
energy consumption of the uncompress data
packets decreases with the increase in the packet

payload length. This is due to the lower
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overhead cost of larger packets and few
numbers of packets due to large packet size.

For packet payload length of 4 bytes, the
percentage energy saving achieved is -17.70%
as seen in Figure 4. At that instance, the block
size is 2 and the compression rate obtained is
14.2396. Data expansion result. That is, the
compressed data size is greater than the
uncompress data size. However, as the packet
payload length increases beyond 4 bytes, the
percentage energy savings increases until at
payload length of 12 bytes when the maximum
percentage energy saving of 29.29% occurs.
Beyond this point (s = 12 bytes), the percentage
energy saving decreases gradually and at
payload length of 275 bytes, the percentage
energy saving is 17.19%.

For the LU84 temperature data set, the Plot
depicted in Figure 4 gives the maximum
percentage energy saving achievable for a given
fixed packet payload length. Thus, if we use the
TinyOS default data payload length of 29 bytes,
the percentage energy saving from the plot is
24.98%. If we set the data payload length to 56
bytes, the percentage energy saving from the
plotis 21.39%.

30

251
20
15f

Percentage Energy Saving (%9
o

50 100 150 200 250 300
Packet Payload (bytes)

Figure 4 Percentage Energy Saving versus
Packet Payload for the LU 84 temperature data
set

Therefore, 20% to 29% of the energy consumed
to transmit uncompressed data can be saved
through compression as a result of the use of
AERLCS for near real-time and real-time
applications. The energy savings by AERLCS is
slightly less than that obtained by the LEC
algorithm. However, AERLCS is more suitable
to use in WSNs than LEC because while
AERLCS is very robust to packet losses LEC is
not.

Conclusion

There are many literatures that discuss data
compression schemes in WSNs. However,
many of the data compression schemes
proposed do not take packet losses into
consideration. Hence, those compression
schemes cannot perform well due to the
unreliable nature of the radio links in WSNs. In
this paper, we have proposed an efficient and
robust lossless compression scheme for WSNs.
AERLCS which is block-based encodes each
block of data independently. As such, side
information does not need to be carried across
packet boundaries. Hence, AERLCS is highly
robust to packet losses. Simulation results show
that AERLCS compression performance is
comparable with those of LEC. It however
outperforms S-LZW. Thus, AERLCS has good
compression performance which led to reduced
power consumption and network lifetime
extension. AERLCS is suitable for both real-
time and delay-tolerant compression

applications.
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