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the approximants was accurately captured and the integrated form 

performed better than the other two variants. 
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1. INTRODUCTION 

The Tau method was initially formulated as a tool for the approximation of special functions 

of mathematical physics which could be expressed in terms of simple differential equations 

(Ortiz, 1969; Adeniyi, 1985; Adeniyi and Aliyu, 2011). It later developed into a powerful and 

accurate tool for the numerical solution of complex differential and functional equations. The 

main idea in it is to approximate the solution of a given problem by solving exactly an 

approximate problem. The method is related to the principle of economization of a 

differentiable function implicitly defined by a linear differential equation with polynomial 

coefficients.
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1.1. The Differential Formulation of Lanczos Tau Method 
Consider the m-th order linear differential system as shown in Equation (1).  

Ly��� : = � 	
���������� = �����

�� ,   � ≤  � ≤  b                                                (1)         

Ly*��
�� : = � �
�  y�
���
�
���

�� � = ��,   �������                                                      (2) 

The idea of Lanczos, C. (1938) as in Adeniyi (1991) and Aliyu, (2007) is to approximate the 

solution of the differential Equation (1) by an n-th degree polynomial function.  

 ����� ∶=   ∑ �
 x
 ,�
��         n < ∞                                                                               (3) 

To obtain the exact solution of a perturbed equation, the polynomial perturbation term is 

added to the right hand side of Equation (1). The polynomial ����� satisfies the condition 

given in Equation (4). 

������ : = � �
�����
���� = �����

�� +  �  ���  (4)    

Where:    

     ����  =  ∑ !�"#���"#��
��  $���"
"� �%�                     (5) 

  ���� is taken as a linear combination of powers of � multiplied by Chebyshev Polynomial 

(Fox, 1962; Adeniyi and Aliyu, 2007). The corresponding coefficients of � in Equation (5) 

are equated and using the initial conditions, the system of equations are solved by Gaussian 

elimination method. 

 

1.2. The Integrated Formulation of Lanczos Tau Method 

Consider the m-th order linear differential system of Equation (1) and let  

& & & & '���(� )
.…   denote the indefinite integration ,  times applied to the function '���, and 

let IL be  

defined as follows: 

IL = & & & & -�∙�(� �
.…                                                                                                               (6) 

The integral form of Equation (1), is then: 

IL (����) = & & & & ����(��
.…. + /������                                                                                (7) 

Where /������ denotes an arbitrary polynomial of degree �0 − 1� arising from the 

constants of integration. The Tau approximate  �����  of the solution ���� of Equation (1) 

thus satisfies the perturbed problem: 

  IL (�����) = & & & & ����(�  �
.  .. + /����  �"����                                                           (8) 

  L* ��  (�
�)  ��, 3 = 1�1�0                                                                                             (9) 

where    �"����) is as  in Equation (5). 

1.3.   The Ortiz Recursive Formulation of the Tau Method 

It was noted in Lanczos.C (1938) as in Aliyu A. I. (2007), that if a sequence of 

polynomials  4����, n = 0, 1 such that  54���� =  �� �67 �--  8 ∈ : can be found for any 

linear differential operator with polynomial coefficients D, then since the chebyshev 

polynomial  
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$���� = ; /�
�
��
�

���
                                                                                                         (10) 

The solution of the Tau problem would be immediately given by:  

����� = !� ; /�
�
�4�����

���
                                                                                                 (11) 

where the parameter ! is fixed using the initial condition. A recursive generation of Lanczos 

canonical polynomials was proposed by Ortiz (1969). Let ���� be a known function which 

satisfies  

Ly��� = ����                                                                                                                    (12) 

where L is m-th order linear differential operator with polynomial coefficients and  

���� = ∑ �
  x
<

��                                                                                                              (13) 

is a given polynomial of degree n with real coefficient �) , , =  0�1�8. In addition, it is 

assumed that ����  � ≤  � ≤  b, satisfies Equation (1). 

A sequence 4
 ���, 7 ≥ 0 of canonical polynomial 4
  ��� is uniquely associated with the 

operator L in Equation (1) such that:  

L4
��� =  �
                                                                                                                        

 (14) 

A few members of the sequence may not be defined for certain operators L. Let S denote the 

set of indices for which members of the sequence are not defined and let s denote the number 

of elements of S. For the generation of the sequence, the generating polynomials L�
 is 

utilised. The Tau method involves seeking a polynomial solution of the perturbed equation:  

��� ���=∑ �
  x
 + <

��  ∑ !�"#�
 �"#��
��  $���"
"� �%�,  n ≥ F                                            (15) 

��� ���=∑ �
  x
 + <

��  ∑ !�"#�
 �"#��
�� ∑  ���"
"���� ∑  ������"
"��

���                                   (16) 

Using Equations (14) and (16), we have: 

��� ��� = ∑ �

<

��  4
  ���+∑ !�"#�
  �"#��
�� ∑  ����"
"��

��� L4� ���                                       (17) 

Since L is linear, this becomes: 

��� ���= �{∑ �
   <

��  4
 ��� + ∑ !�"#�
 �"#��
�� ∑  ���"
"���� ∑  ����"
"��

��� 4� ���}    (18) 

Assuming that L-1 exits, this further gives Equation (19) as the approximation: 

��� ���= ∑ �
   <

��  4
 (x) + ∑ !�"#�
  �"#��
�� ∑  ���"
"���� ∑  ����"
"��

��� 4� ���                    (19)                          

At this stage, all the quantities on the right hand sides of Equation (18), except !�, . . ., !��# are 

known. To determine these parameters, the Gaussian elimination is applied to m+s algebraic 

equations.  

(a). The coefficient of any  4
  ��� , 7AB  in (18) is set to zero to give n conditions   and  

(b). ��  ��) given by (18) satisfies (a) and also m conditions L*����
�� = �
 ,  k = 1,2,…,m. 

2.   NUMERICAL EXAMPLE 

Consider the solution of an ordinary differential equation with the Tau method for the three 

variants described above. 

2.1. Example 2.1 

Consider the first-order IVP 
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�����: = �� −  1� �C��� + ���� = 0 , ��0� =   (20) 

with exact solution ���� = �1 + ��-1, 0  ≤  � ≤  1. From (2.1), m =1, s = 0 and  ���� = 0 

2.1.1. First variant (differential form)  

From Equations (4) and (5), the Tau approximant (Equation 20) satisfies the condition of 

Equation (20). 

����� = ∑ �
  x
,<

��  8 < ∞                                                                                                         

 (21) 

�� + 1���C ��� + ����� = !�$�∗���                                                                                         (22) 

��C  (0) =1                                                                                                                                 (23) 

Equation (22) is then solved  for n=5, so the Tau problem we are concerned with is:  

�� +  1� ��C  ���  +   �E ���  =  !� $E∗���  (24)       

  �E�0� = 1                                                                                                                            (25) 

where: 

  $E∗��� =  −1 + 50� − 400�H + 1120�J  − 1280�L + 512�E                                         (26)                                             

Substituting Equation (21), �8 = 5� into (24) gives: 

; �7 + 1��
  x
 + � 7�
  x
��E

��

E


��
         

      = !��−1 + 50� − 400�H + 1120�J  − 1280�L + 512�E�  (27)                          

Equating corresponding coefficients of powers of � in (27) and  �
  = 1 from the condition 

(25) we obtain the Tau system: 

 

MN
NN
NO
1 0 0
2 2 0
0
0
0
0

3
0
0
0

3
4
0
0

    

0 0 1
0 0 −50
0
4
5
0

0
0
5
6

400
−1120
1280
−512 RS

SS
ST

M
NN
NN
O �H �H  

�H�H�H!� R
SS
SS
T

=  

M
NN
NN
O−1

0
0
0
0
0 R

SS
SS
T
                                                                          (28) 

 The solution of which gives: 

   !�= -3/2342 ,  ��= - 2339/2342 , �H = 2264/2342 ,  �J = -1864/2342 ,  

�L=1024/2342,  �E = -256/2342                                                                                               

Hence, the 5-th degree Tau approximant of Equation (20) is  

�E���  =  − �256�E − 1024�L + 1864�J − 2264�H + 2339� − 2342�/2342               (29)    

2.1.2. Second variant (integrated formulation) 

From Equation (4), we have for the given problem:  

WXY����Z = &[�1 + ���C��� + ����\(� + /� = 0                                                       (30) 

⟹ WXY����Z = �1 + ������ − & ����(� + & ����(� + c1 = 0                                               

 (31)                                

consider Equation (31) in the range [0, �\ to obtain: 
�1 + ������ − 1 = 0                                                                                                   (32) 

Thus, the perturbed integrated problem becomes                  

�1 + �������=1 + !� $�"�∗ ���                                                                                                 (33) 

���0�   = 1                                                                                                                               
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Substituting Equation (21) and (n = 5) into Equation (33) gives 

   ∑ �
 x
E
�� + � �
  x
"� =E

��  1 + !� $̂ ���                                                            (34)                                

Where: 

$̂ ��� = 1 − 72� + 840�H − 3584�J + 6912�L − 6144�E + 2048�^                                        (35) 
Equating corresponding coefficients of powers of � in (32) and the proceeding as in the first 

variant to obtain, for the case 8 =  5: 

 �� = 19600/19601, �� = 19528/19601, �H = 18688/19601, �J = 15104/19601                                                

�L = 8192/19601,  �E = 2048/19601, !�  = -1/19601 

Hence the 5-th degree Tau approximant of (20) becomes 

�E���  =  �19600 − 19528� + 18688�H − 15104�J + 8192�L − 2048�E�/19601        

 (36)           

It is observed that the value of  !�  in (36) is smaller than that obtained for the first variant due 

to the higher order perturbation term used in Equation (33). If we define the error of the Tau 

method at the point  � =  � , 0  ≤ � ≤  1, as |y(α)- yn (α)|, then the error at the point � = 0.5, 

for example, from the use of Equation (29) is approximately 7.12 × 10�E while the one 

obtained from  the use of Equation (36) is approximately 3.40 × 10�E, justifying the claim 

that the integrated formulation of the Tau method gives more accurate approximants than the 

differential form. 

2.1.3   Third variant (recursive formulation) 

From Equation (19), we have, for the IVP (Equation 20) 

����� = !�  ∑  �
��  c

�%�4
���                                                                                               (37) 

where the members of the sequence  4
��� ,r =0�1�8, of canonical polynomials are 

generated recursively as follows: 

From equation (20): 

��
  = �1 + ��7�
�� + �
                                                                                                     (38) 

i.e. ��
 = �7 + 1��
 + �
��                                                                                                 (39) 

Using Equation (14) in Equation (39) we have: 

��
  = (r + 1) L4
��� +7�4
�����                                                                                         (40) 

and since L is linear, Equation (40) becomes: 

�
 = 74
����� + �7 + 1�4
���                                                                                           (41) 

which gives the recursive formula: 

 4
��� = %d�
edfg�%�

"�   , 7A:                                                                                                  (42) 

From Equation (42), we obtain, for 7 =  0,1,2,3,4,5 

  Q0��� = 1,   Q1(x) = 
%��

H  ,   Q2(x) = 
%h�%��

J  , Q3(x) = 
%i�%h"%��

L  

Q4��� =  
%j�%i�%h�%"�

E  , Q5(x) = 
%k�%j"%i�%h"%"�

^     (43)  

Thus, the 5-th degree Tau solution of Equation (22) is given by:  

�E��� = !��−4���� + 504���� − 4004H��� + 11204J��� − 12804L��� +  5124E���� 
 (44)                     

where 4
���, 7 =  0�1�5 are defined by Equation (43).Using condition of Equation (25) in 

Equation (44), we obtain:  
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!�  = -3/1830. Thus, Equation (44) now becomes:  

 �E���  =  −�256�E − 1024�L + 1864�J − 2264�H + 1827� − 1830�/1830  (45) 

After substituting the values of !�  and the expression for 4
 ��� and then simplifying the 

resulting expression, thus, we observe that Equation (45) is almost the same as Equation (29) 

obtained for the differential formulation. 

3.  ERROR ESTIMATION OF THE LANCZOS TAU METHOD 

The subject of error estimation is of central concern in numerical analysis since most 

numerical methods provide approximations to the true desired solutions of mathematical 

problems; Namasivayam, S. and Ortiz, E. L. (1981) and Adeniyi R. B. (1991). It is important 

to be able to bound or estimate the resulting error and a numerical method therefore that fails 

to provide a suitable procedure for doing this is incomplete.  The error estimation for the 

three variants are thus reviewed hereunder. 

3.1. Error Estimation for the Differential Form 

The error function  l���� defined  

l���� = ���� − �����                                                                                                          (46) 

which satisfies the error equation:  

     �l���� −  ����                                                                                                                (47) 

and 

m�"���� =  ∅opq�%�rofqsg∗ �%�
Hh�ofq�sg     (48)  

To determine  ∅� in Equation (48), we consider the perturbed equation:  

�m�"���� =  − ���� +  t�"�                                                                                               (49)        

Where: 

 tn+1(x) = !� $�"#"�∗ ��) + !H $�"#∗ ��) + … + !̅m+s $���"H∗ ��)                                               (50) 

That is: 

LEn+1(x) = + !̅1$�"#"�∗ ��) + (!̅2- !�) $�"#∗ (x) + (!̅3  - !H) Tn+s-1(x) + . . . + 

 (!̅m+s -!�"#��) $���"H∗ ��) – !�"# – !���"� ���                        (51) 

The necessary (m+s+1) equations to determine !̅1, !̅2, . . . , !̅m+s and ∅� are given by equating 

the coefficients of ��"#"� , ��"# , … , ������  in Equation (51). Then the value of ∅� is 

obtained by a forward substitution which depends on 8 and !�"#. Substituting the expression 

so obtained into m+s+1 (48) gives  m�"���� in terms of known quantities and for large n, 

Equation (52) is obtained as an estimate of the maximum error ε, in the interval 0 ≤ x ≤ 1. 

v�∗ = max�x%x�|m�"����| = 
|∅o|

Hhofhqsg  (52) 

3.2. Error Estimation for Integrated Formulation 

The integrated formulation of the Tau method often leads to better accuracy of the Tau 

solution (Fox, 1962; Ortiz, 1969; Aliyu, 2007). The integrated error equation is therefore 

considered here with the aim of improving the accuracy of the estimate Equation (52). To the  

& & & & '���(� )
.…  denote the indefinite integration , times applied to the function g(x) and let  
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IL = & & & ��∙�(� )
.  ..   (53) 

be the integrated form of Equation (47). Therefore:  

IL(En���) = - & & &  ����(�  �
.  ..   (54) 

The perturbed form of Equation (54) that is the perturbed error equation: 

IL�m�"����� =  − & & &  ����(�  �
.  ..   +  tn+m+1��� (55) 

which is satisfied  by  m�"����  given by Equation (48) with ∅� replaced  by ø{n. 

 t�"�"����  = T} �"�"#"����  + τ�H T∗��"�"#����  + $��"#$�"H���                                 (56) 

Equating corresponding coefficient of like powers of � in Equation (55) and solving the 

resulting algebraic equations lead to the values of ø{n which yields Equation (57) as an 

estimate of v. 

v�∗ = 
| ∅t� |

Hhofhqsg                                                                                                                      (57) 

3.3. Error Estimation for the Ortiz Recursive Formulation 

The expression of the approximate solution of �� ��� in terms of canonical polynomials 

offers several advantages as canonical polynomials neither depend on the interval in which 

the solution is sought (Crisci and Russo, 1982). Also, when an approximation of a higher 

degree 8 + 3, 3 ≥ 1 is required, it is only necessary to compute 4�"� ���, 4�"H ���,… 

4�"� ���, canonical polynomials, and then weight these and the ones already computed with 

a different set of coefficients c

��"��

, r = 0(1)(8 + 3), to get the desired approximation. 

Once the canonical polynomials are generated, they can be used for an error estimation of the 

Tau method (Namasivayam and Ortiz, 1981; Crisci and Russo, 1982; Adebiyi and Aliyu, 

2007). Here, we consider a slight perturbation of the given boundary conditions, by v�∗ given 

by Equation (52) to obtain an estimate of the Tau parameter $�"#  in terms of canonical 

polynomials which is then substituted back into the expression for v�∗  in Equation (52) for a 

new estimate vJ∗. 

4.0. NUMERICAL EXAMPLES 

In this section, two examples are considered. The error was estimated for the three variants of 

the Tau method. The effect of perturbing some of the homogenous conditions of the error 

function l� (�) for the error polynomial m�"�(�� for the case of boundary value problems 

was also examined. 

4.1. Example 4.1 

We consider the IVP: 

�� (�): = (1 + �� ��
�% + �(�) = 0 , � (0) = 1                                                                         (58) 

with theoretical solution � (�) = �1 + ���� ,  0 ≤ � ≤ 1 

For the problem, m = 1, s = 0, ���� = 0:  

 �(�) =  $�∗ (�� =!̅1 ∑ c

����
��  �r,  tn+1(�) =  !̃� $�"�∗  ��� =   !̃� ∑ c


��"���"�
��  �
 

m�"� (�� = 
∅o%ro∗�%�
�ofqsg

�ofqfg� = 
∅o%ro∗�%�

Hhofg   = 
∅o

Hhofg ∑ c
��"�
��  xr+1                                                           (59) 
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4.1.1. Differential formulation 

From Equation (49), we have:  

�m�"� (�� = !̅1 − $�∗(�� + !�̅$�"�∗  ���   (60) 

Substituting Equation (59) into Equation (60) results in:  

�1 + �� �m�"�C ���� +m�"�  (��  = − ∑ c
��"�
��  �
 + !�̅ ∑ c
�"��
��  �
                                    (61) 

Where: 

m�C ��� = 
∅o

Hhofg ∑ �7 + 1��
�� c

����
= 

∅o
Hhofg[�8 + 1�c���� ���� +�8 − 1�c��H� ���H +…]      (62)                          

Expanding both sides of Equation (61) results in: 
∅o

Hhofg[2 + 8� c�
���

 ��"� + [�8 + 1� c�
���

 + �8 + 1� c���
���

] ��+…..] = 

!�̅c�"�
��"����"� +(!�̅ c�"�

��"��
 − !�c�"�

��"����� +…..                                                                       

  (63) 

Equating corresponding coefficients of  ��"�  and ��  in Equation (63) gives the system of 

equations: 

!�̅c�"�
��"�� =  ∅o

Hhofg �2 + 8� c�
���

                                                                                              (64) 

!�̅c�"�
��"��

 - !�̅c�
���

 = 
∅o

Hhofg [�1 + 8� c�
���

 + �8 + 1� c���
���

]                                                    (65) 

Equation (65) was solved for !�̅ and ∅� by a forward substitution. From Equation (64): 

              
!�̅ = 

�H"�� �o
�o�

Hhofg��osg
�osg� ∅�                                                                                                            (66) 

 

c�
���

 = 2H���,    c�"�
��"��

 = 2H��� ,   �o
�ofg�

�o
�o�    = 

��
H 8,       �o

�osg�

�osg
�osg� =   ��

H �8 + 1�                          (67) 

Substituting Equation (67) in (66) results in:  

           !�̅= 
�H"��∅o 

Hhofg                                                                                                               (68) 

Substituting Equation (68) into (65) and simplifying results in: 

∅� = 
H^�H��H�

��"��                                                                                                                       (69) 

From Equation (49), we have for 0 = 1: 

v�∗ = 
|�g|

H��"��                                                                                                                          (70) 

4.1.2. Integrated formulation 

From Equation (53) we have: 

& [�1 + ��m�"�C ��� + m����\(� = −!�
%

� &  ����(� + !�̅ �"H
%

� (�)                                        (71) 

Replacing ∅� by ∅t� and  t�"H��� = !̃�$�"H��� = !̃� ∑ c
�"H�
�"H
��  

Thus: 

�1 + ��m�"� ���\�� − & m�"� 
%

� ���(� + & m�"����(� = −!�̅ & $����(� + $�"H���%
�

%
�              (72)    

Expanding Equation (72) and collecting like terms results in:  
∅o

Hhofg[c�
�����"H +  (c�

��� + c� ��
��� ���"� + ⋯ \ = !�̅c�"H

��"H� ��"H + 
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[!�̅c�"�
��"H�  −  ��g�o

�o�

�"�\ \��"� + ⋯                                                          (73) 

Equating the corresponding of ��"H  and  ��"� in Equation (73) gives the following system 

of equations. 

!�̅c�"H
��"H�

 = 
�o

�o�∅to
Hhofg                             (74)

                                                             

!�̅c�"�
��"H�

 − �g�o
�o�

�"� =  ∅to
Hhofg [c� 

���
 + c�  ��

��� \                                                                              (75) 

Solving for !�̅and ∅�� using forward substitution results in: 

 !�̅ =  �o
�o�∅�

Hhofg�osg
�osgs  =  ∅�

Hhosg   and  ∅�� = �Hho�g
��"���J�"���                                                             (76) 

From Equation (57): 

vH∗ =  H|��g|
��"���J�"���                                                                                                                   (77) 

4.1.3. Recursive formulation 

The Tau approximant ����� = �1 + �� ��
�% + ���� = 0, ��0� = 0 is defined as: 

�� ��� =  !�̅ ∑ c
   ��
�� 4
���                                                                                                     

 (78) 

where the members of the set of canonical polynomials 4
���,  r= 0 (1) n, are generated 

recursively from: 

4
��� = %d�
edfg�%�

"�                                                                                                                  

 (79) 

4���� = 1,  4���� =  %��
H , 4H��� = %h�%"�

J , 4J��� =  %i�%h"%��
L    

and we let  

�
�(�) = ∑ c�
�� 4

��� ���


���
,   �= 0 (1) 0                                                                              (80) 

denote the derivative of �� (�) where 4
 (�), 7 ≥ 0 is set of canonical polynomials 

associated with conditions. Using the initial condition �� �0� = 1, we have from Equation (79) 

and (80): 

!�̅�� �0� = 1 

Hence, |!}�⃒⃒ �� �0�  ≤ 1 +  v�  ∗    Since  v�  ∗  ≥ 0  

and this becomes: 

|!̃�| ≤ H��"��
H ��"��| �o ���|��                                                                                                           (81) 

This estimate of |!̃�| is substituted into Equation (70) to give:  

v�  ∗   ≤ �
H ��"��| �o ���|�� = vJ  ∗                                                                                                     (82) 

This is dependent on the canonical polynomials but independent on !�̅ .The main attraction of 

Equation (82) is that it is possible to obtain an estimate of the error prior to computation of 

�� ���, assuming  c
 
���  

 and 4
 ��� , 7 =  0�1�8 are known. 
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4.2. Example 4.2 

Consider the second Order IVP: 

�� ��� =  �CC ��� −  4� = 0  ,  ��0� = 1 ,�C �0� = 1                                                           (83)                                                                       

with analytic solution  ���� =  �
L  �3lH%  − l�H%�,    0≤ � ≤ 1. 

For this problem  0 =  2, �, =   0, ����  =  0 

 �  ��� =  !�̅$� � ∗  ��� =  !�̅ ∑ c

������


��  �
  + !H̅ ∑ c

����������


��  �
                 
 ��"�  ��� =  !�̅$�"� ∗  ��� + !̅H$� ∗  ��� =   !�̅ ∑ c


��"����"��

��  �
  + !H̅ ∑ c


������

��  �
    

m�"� ��� =  ∅o%hrofg∗ �%�
�ofqsg

�ofqsg� =  ∅o%hrofg∗ �%�
Hhofi   =  ∅o

Hhofi  ∑ c

��������


��  �
"H                                     (84) 

4.2.1. Differential formulation 

From Equation (49) we have:  

�m�"�  ��� =  − !�̅$�∗ ��� − !H̅$���∗  ���   + !�̅$�"�∗  ���   + !H̅$�∗ ���                                 (85) 

which after expanding Equation (85) results in: 
∅o

Hhofi  [−4c���
�����

 ��"� − 4c��H
�����

 �� + �8�8 + 1�c���
�����  − 4c��J

���������� + ⋯ \ 
= !�̅c�"�

��"�� ��"� +   [!�̅c�
��"�� +  !H̅ c�

��� −  !�c�
���\ ��  + 

[!�̅c���
��"�� +  !H̅c��� 

��� −  !�c���
 ���  − !H c���

 �����\ ����  + ⋯                                                 (86) 

Equating the corresponding coefficients of ��"�, �� and  ���� in (86) and solving the 

resulting systems equations we obtain the value of ∅�. 
∅� =  Hhofj �g

�g
                         (87) 

where  3� = 16 c��J
��"�� −  c���

��"��  − 8�8 − 1�2H� 

Hence: 

v�  ∗  =  Hhofg |�h|
�g

                                                                                                             (88) 

4.2.2. Integrated formulation 

From Equation (55): 

WX �m�"� (x)) =  − & &  � ���(�(� +   t�"J
�

�
%

�  ���          (89)

  

Where: 

 t�"J ��� =  !�̅ ∑ c

��"J��"J
��  �
 +   !H̅ ∑ c


��"H��"H
��   �
}                

  � ��� = !� ∑ c

����
��  �
 +   !H ∑ c


��������
��   �
 

m�"�  ��� =  ∅o%hrofg �%�
Hhofi                                                                                                          (90) 

Substituting Equation (89) into (90) results in: 

& & m�"�CC ���(�(� −�
�

%
� & & m�"�

�
�

%
� ���� (�(� =  −!�  & &  �

�
�

%
� ��� (�(� +    t�"J ���  (91)

      

Equating corresponding coefficients of ��"J, ��"H and  ��"� in (91) and solving the resulting 

systems of equations results in the following: 
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∅t� =  ��"H���"J�×H�ofi�h
�h

                                                                                    (92) 
 
3H =  �8 + 2��8 + 3��8 × 2L�"� − 8�8 + 1�2L�+2H�"Ec��J

������ − 

8�8 + 1�c�"J
��"�� × 2H��J                                                                                                        (93) 

Thus: 

v�  ∗  = ��"H���"J�×Hjo |�g|
�h

                                                                                                         (94) 

 

4.2.3. Recursive formulation 

The Tau approximation of Equation (58) is defined as:  

�� ��� = !� ∑ c

����
�� 4
 ��� + !H ∑ c


�������� 
��  4
 ���                        (95) 

where the members of the set of canonical polynomials  4
���, 7 =  0 �1�8 are generated 

recursively from: 

4
 ��� =  
�
���edfh  �%��%  d   
L  ,  r = 0 (1) n 

That is:  

4� ��� =  − 1  
4 , 4� ��� = − �  

4 , 4H ��� = − 1  
8 − �H  

4 , 4J ��� = −3 �  
8  −  �J  

4  , 
4L ��� =  − 3  

8 −  3�H  
4 −   �L 

4 ,   4E��� =  −15 �  
8  −  5�J  

4 − �E 
4  

Substituting the initial conditions Equation (83) in (95) results in: 

!� ∑ c

����
��  4
 �0� + !H ∑ c


����� ��� 
��  4
 �0� = 1                                                            (96)

  

and 

!� ∑ c

����
��  4
C �0� +  !H ∑ c


����� ��� 
��  4
C �0� = 1                                                             (97) 

In the notation of Equation (80), these yields: 

!��� �0� +  !H�� �� �0� = 1 (98) 

!� �
C �0� +  !H�
C �0� = 1  (99) 

From Equation (99): 

 !� = [  1 −  !H����C �0�\/��C �0�                                                            (100) 

Inserting  Equation (100) into  (98) gives: 

[�����0�\��C �0� − ����C �0�\ !H =   ��C  �0� −  �� �0�  
Thus: 

|[�����0���C �0� − ����C �0� �� �0�\�|!H| ≤ ��C �0� −  �� �0�� +  v�  ∗   
since v�  ∗  ≥ 0  from  Equation (88), thus: 

|!H| ≤ �g��o� ���� �o ����
|�g| �|[�ofg����o� �����ofg� ��� �o �����Hhofg                                       (101) 

But: |!H| = �g�g∗
Hhofg 

This estimate of   |!H| is substituted back into Equation (101) to give: 

v�  ∗  ≤ ��o� ���� �o ����
Hf�hofg�|�g|��ofg����o� �����ofg� ��� �o ������                                        (102) 

where  3� = 16c��J
��"�� −  c���

��"�� − 8�8 − 1� 2H� 
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This is the error estimate which is dependent on the canonical polynomials but independent 

of  !H 
Table 1:  Error and error estimate for Example 1 

No.of opproximant 2 3 4 5 

v�  ∗   2.17 x 10-0 3.68 x 10-1 6.25 x 10-2 9.94 x 10-4 

vH ∗  2.45 x 10-3 2.66 x 10-4 3.15 x 10-5 3.96 x 10-6 

vJ  ∗   2.22 x 10-2 3.69 x 10-3 6.28 x 10-4 1.07 x 10-4 

Exact Error 2.29 x 10-2 4.95 x 10-3 7.51 x 10-4 1.12 x 10-4 
Comment:  v�  ∗   has smaller error than vH  ∗   

 

Table 2: Error and error estimate for Example 2 

No.of approximant 2 3 4 5 

v�  ∗   4.16 x 100 1.70 x 10-1 1.19 x 10-2 9.94 x 10-4 

vH  ∗   1.96 x 10-2 1.11 x 10-3 5.70 x 10-5 3.36 x 10-6 

vJ  ∗   4.86 x 100 1.71 x 10-1 1.19 x 10-2 9.94 x 10-4 

Exact Error 1.55 x 100 4.92 x 10-1 3.61 x 10-2 4.86 x 10-4 
Comment:  vH  ∗   shows significant improvement over v�  ∗   for example 2 

4. CONCLUSION 

It is observed in this work that perturbing the integrated error equation appears to improve the 

accuracy of the error estimate significantly. Also the representation of the estimate in terms of 

canonical polynomials does not lead to appreciable loss of accuracy. In Examples 4.1 and 4.2, 

it is noted that both the differential and recursive forms yield approximations of the same 

order when all the parameters involved in the general form took value. 
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