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The tau method approximates the solution of a differential equation 

with a polynomial. This is the exact solution of a differential 

equation obtained by adding to the right hand side of the given 

equation a perturbation term, consisting of suitably chosen linear 

combination of polynomials. In this paper, a generalized formula or 

recurrence relation for the integrated variant of the tau method was 

derived which captures the general class of problems involving m-th 

order ordinary differential equations (ODEs) To validate this result, 

the generalized form was casted as a theorem for which 

mathematical induction principle was used to prove  the  result. 
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1. INTRODUCTION 

The essence of the tau method is to perturb the given differential problem in such a way that 

its exact solution becomes a polynomial (Lanczos, 1938; Lanczos, 1956; Ortiz, 1969). This is 

achieved by using a polynomial perturbation term, added to the right hand side of the 

differential equation. The desired Tau approximation is written in terms of a special 

polynomial basis called the canonical polynomial basis. This is uniquely associated with the 

given differential operator D which defines the given problem such basis does not depend on 

the degree of approximation (Ortiz, 1974). The order of the approximation can be increased 

by just adding one or more canonical polynomials to those already generated and updating 

the coefficients affecting them (Adeniyi and Ma’ali, 2008; Yisa and Adeniyi, 2012).
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An attempt to improve upon accuracy of the tau approximant of �(�) resulting from the 

differential form led to the integrated formulation. By this method, the differential equation is 

integrated through as many times as its order, which consequently leads to higher 

perturbation than the original differential formation. To give more flexibility in computation 

of Tau solution, Lanczos (1956) introduced a systematic use of the so-called canonical 

polynomials in the Tau method. A recursive generation of Lanczos canonical 

polynomials was proposed by Ortiz (1969) and extended in Namasivayam and Ortiz (1981) 

and more recently, Adeniyi and  Aliyu (2012a), Adeniyi and  Aliyu (2012b) and Ma’ali 

(2012). 

Let us consider the following m-th order linear differential equation: 

��(�) ∶= ∑ 	
��

�� (�)�
(�) =  ∑ �
�
 ,   � ≤ � ≥ �                                 �
��    (1) ��(�) ∶=  ∑ �
���

�� �(
)(�
�) =  �� ,      � = 1(1)�.                                     

  (2) 

     The integrated form of Equation (2) is given by:              ���(�)  ∶=  ∭   ! �(�)"� + ……..�  %�(�)        (3)              

Where %�(�) denotes an arbitrary polynomial of degree (m-1), 

arising from constants of integration, and equation (4) is the m time indefinite integration of �(. )                ���(�)  ∶=   ∭   ! �(. )"� + ……..�                                                                            (4)                

     The tau approximant ��(�) of Equation (1), satisfied the perturbed problem:                ���(�)  ∶=   ∭   ! �(�)"� + ……..�  %�(�) +  &�'�(�)   (5)                 ���(�
�) =  ��  ,       � = 1(1)�      (6) 

             Where:            &�'�(�) =  ∑ %�'(�
)��'
'
(�)�'(�

��          (7) 

       and           ��(�) =  ∑ �
�
�� �
 ≅ �(�) , + +  ∞                                                                    (8) 

The tau problem (Equation 5) gives a more accurate approximate of �(�) than Equation (1) 

due to the higher perturbation term. 

2. THE GENERALIZED RECURRENCE RELATION FOR THE INTEGRATED 

VARIANT FOR M-TH ORDER ORDINARY DIFFERENTIAL EQUATIONS 

The generalized recurrence relation for the initial value problem (Equation 1) will be 

obtained for the cases � = 1, 2, 3, … and / =   0, 1, 2, …. The following individual cases are 

considered and from which the general case will be obtained. 

The case 1 = 2, 3 = 4 

From Equation (1): (5
� +  5

�)�6(�) +  5���(�) =  ∑ �
�
                � ≤ � ≤ �7
��   (9) �(�) =  ��                  (10) 

From the method, we have: 
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! 8(5
� +  5

9)(:�, (9)�'
 +  5�� (:�(9))�'
;"9 =  −=
  ! &�(9)"9 +  =̃
&�'?(�)  @� (@� 11) 

Where: 

(:�(�))�'
 =   AB(@)∅DEDFBGH(@)
IDFBGH(DFBGH) =   ∅DJ (@)ED(@)

ID(D)   = =  ∅DJ (@)ED(@)
?KDFH       (12) 

 (:�(�))�'
 =  ∅L
MH 8N
��'
 + N?�� + NO���
 + + + ⋯ ;                                            (13) 

Where: N
 = %�(�) , N? = %��
(�)  , NO = %��?(�)
  etc. 

and &�(�) =  =
 ∑ %
(�)�
��   �+"   &�'
(�) =  =
 ∑ %
(�'?)�'?
�� �
                                                        (14) 

Thus, from Equation (13) we have: 

! (:�(9))�'
@� "9 =  ∅
MH QMH@DGK

�'? + MK@DGH
�'
 +  MR@D

� + + + ⋯ S                            (15) 

Substitute Equation (13), (14) and (15) into (11), expanding it and collecting the like terms 

results in: 

∅L
MH 8T
��'? + T?��'
 + ⋯ ; = =̂
%�'?(�'?)��'? V=̂
%�'
�'? − EHID(D)

�'
 W ��'
+. ..      (16) 

Where: 

T
 = QXYY'(�'
)XHH�'? S N
, T? = 	
� + QXYY'�XHH�'
 S N?                                   (17) 

Equating the corresponding coefficients of ��'? and ��'
 in Equation (17) and solving the   

resulting system of equations results in: 

=̂
 = ∅LZH
MHIDGK(DGK)                                                                                                                       (18) 

and 

∅L = MHKEH(�'
)[K                                     (19) 

where: 

\
 = T? − IDGH(DGK)[H
IDGK(DGK)                                                                                                                 (20) 

The case 1 = 2, 3 = 2 ��(�) = (5
� + 5

 + 5
?�?)�6(�) + (5�� + 5�
�)�(�) = ∑ �
7
�� �
       (21)                                � ≤ � ≤ �                                                                                 
With the initial condition as given in Equation (10). The perturbed integral form of Equation 

(21) becomes: 

] Q(5
� + 5

9 + 5
?9?)(:�│(9))�'
 + (5�� + 5�
9)(:�(9))�'
S@
� "9 

= −=
 ! &�'
@� (9)"9 + =̃
&_�'?(�)                                                                               (22) 

where: &�'
(�) = =
=�'
(�) + =?=�(�)                                                                                   (23) 

and &_�'?(�) = =̃
=�'O(�) + =̃?=�'?(�)                                                                             (24) 

Inserting Equation (24), (13) and (15) into (22) gives: 
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L̀
N
 8T
��'O + T?��'? + TO��'
 + + + ⋯ ; 
= =̃
%�'O(�'O)��'O + a=̃
%�'?(�'O) + =̃
%�'?(�'?) − =
%�'
(�'
)

+ + 2 b ��'? 

+ V=̃
%�'
(�'O) + =̃
%�'
(�'?) − EHID(DGH)
�'
 − EKID(D)

�'
 W ��'
                                     (25) 

where: 

T
 = V5�
 + (+ + 1)5
?+ + 3 W N
                                                                                                  
T? = V5�� + (+ + 1)5

+ + 2 W N
 +  V5�
 + +5
?+ + 2 W N?                                                           
TO = 5
�N
 + V5�� + +5

+ + 1 W N? + V5�
 + (+ − 1)5
?+ + 1 W NO                                          
N
 = %�(�),      N? = %��
(�) , NO = %��?(�)            :cd.                                                    (26) 

Equating the coefficients of powers of ��'O, ��'?, �+" ��'
 from both sides of Equation 

(25) we obtain the following values for  =̃
, =̃?, �+" _̀: 

=̃
 = _̀T
N
%�'O(�'O)                                                                                                                  
=̃? = =
%�'
(�'
)

(+ + 2)%�'?(�'?) + _̀
N
 aT? − %��?(�'O)T
%��O(�'O) b 

∅L� = �MHEK(�'
)[R                                                                                                                  (27) 

Where: 

\O = TO − IDGH(DGR)[H
IDGR(DGR) − IDGH(DGK)[K

IDGK(DGK)                                                                                      (28) 

Which gives the following recursive form: \
 = T
 

\? = T? − %�'?(�'O)\
%�'O(�'O)  

\O = TO − IDGH(DGR)[H
IDGR(DGR) − IDGH(DGK)[K

IDGK(DGK)                                                                                    (29) 

Continuing with the process using � = 1, / = 1, 2, 3, 4, … by expanding Equation (1) we 

have the following recursive forms:  

For � = 1, / = 2, we have \
 = T
 

\? = T? − %�'O(�'f)\
%�'f(�'f)  

\O = TO − %�'?(�'f)\
%�'f(�'f) − %�'?(�'O)\?%�'O(�'O)  
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\f = Tf − IDGH(DGg)[H
IDGg(DGg) − IDGH(DGR)[K

IDGR(DGR) − IDGH(DGK)[R
IDGK(DGK)                                                            (30) 

Where: 

T
 = V5�? + (+ + 1)5
O+ + 4 W N
                                                                                                  
T? = h5�
 + (+ + 1)5
?+ + 3 i N
 +  V5�? + +5
O+ + 3 W N?       
TO = h5�� + (+ + 1)5

+ + 2 i N
 + V5�
 + +5
?+ + 2 W N? + h5�? + (+ − 1)5
O+ + 2 i NO         
Tf = 5
�N
 + QXYY'�XHH�'
 S N? + QXYH'(��
)XHK�'
 S NO + QXYK'(��?)XHR�'
 S Nf                    (31) 

For � = 1, / = 3, , j: k�l: \
 = T
 

\? = T? − %�'f(�'m)\
%�'m(�'m)  

\O = TO − %�'O(�'m)\
%�'m(�'m) − %�'O(�'f)\?%�'O(�'O)  

\f = Tf − %�'?(�'m)\
%�'m(�'m) − %�'
(�'O)\?%�'f(�'f) − %�'?(�'O)\O%�'O(�'O)  

\m = Tm − IDGH(DGn)[H
IDGn(DGn) − IDGH(DGg)[K

IDGg(DGg) − IDGH(DGR)[R
IDGR(DGR)     (32) 

Where: 

T
 = V5�O + (+ + 1)5
f+ + 5 W N
                                                                                                  
T? = h5�? + (+ + 1)5
O+ + 4 i N
 +  V5�O + +5
f+ + 4 W N?       
TO = h5�
 + (+ + 1)5
?+ + 3 i N
 + V5�? + +5
O+ + 3 W N? + h5�O + (+ − 1)5
f+ + 3 i NO       
Tf = QXYY'(�'
)XHH�'? S N
 + QXYH'�XHK�'? S N? + QXYK'(��
)XHR�'? S NO+ QXYR'(��?)XHg�'? S Nf 

Tm = 5
�N
 + QXYY'�XHH�'
 S N? + QXYH'(��
)XHK�'
 S NO + QXYK'(��?)XHR�'
 S Nf + QXYK'(��
)XHR�'? S Nm       
          (33) 

Similarly, for � = 1, / = 4: \
 = T
 

\? = T? − %�'m(�'q)\
%�'q(�'q)  

\O = TO − %�'f(�'q)\
%�'q(�'q) − %�'f(�'m)\?%�'m(�'m)  
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\f = Tf − %�'O(�'q)\
%�'q(�'q) − %�'O(�'m)\?%�'m(�'m) − %�'O(�'f)\O%�'f(�'f)  

\m = Tm − %�'?(�'q)\
%�'q(�'q) − %�'?(�'m)\?%�'m(�'m) − %�'?(�'f)\O%�'f(�'f) − %�'?(�'O)\f%�'O(�'O)  

\q = Tq − IDGH(DGr)[H
IDGr(DGr) − IDGH(DGn)[K

IDGn(DGn) − IDGH(DGg)[R
IDGg(DGg) − IDGH(DGR)[g

IDGR(DGR) − IDGH(DGK)[n
IDGK(DGK)                   (34) 

Where: 

T
 = V5�f + (+ + 1)5
m+ + 6 W N
                                                                                                  
T? = h5�O + (+ + 1)5
f+ + 5 i N
 +  V5�f + +5
m+ + 5 W N?             
TO = h5�? + (+ + 1)5
O+ + 4 i N
 + V5�O + +5
f+ + 4 W N? + h5�f + (+ − 1)5
m+ + 4 i NO       
Tf = V5�
 + (+ + 1)5
?+ + 3 W N
 + V5�? + +5
O+ + 3 W N? + V5�O + (+ − 1)5
f+ + 3 W NO

+ V5�f + (+ − 2)5
m+ + 3 W Nf 

Tm = V5�� + (++1)5

+ + 2 W N
 + V5�
 + +5
?+ + 2 W N? + h5�? + (+ − 1)5
O+ + 2 i NO
+ h5�O + (+ − 2)5
f+ + 2 i Nf 

+ V5�f + (+ − 3)5
m+ + 2 W Nm 

Tq = 5
�N
 + V5�� + +5

+ + 1 W N? + h5�
 + (+ − 1)5
?+ + 2 i NO + h5�? + (+ − 2)5
O+ + 1 i Nf 

+ QXYR'(��O)XHg�'
 S Nm + QXYg'(��f)XHn�'
 S Nq                                                             (35) 

The case   1 = t, 3 = 4   
From   Equation (1) we have for � = 2, / = 0: ��(�) ∶= (5?� + 5?
 + 5??�?)�uu(�) + (5
� + 5

�)�u(�) + 5���(�) = ∑ �
�
,   � ≤v
��� ≤ �                                                                          (36) �(�) = ��, �u(�) = �
                                                                                                       (37) 

which yields: ! ! w(5?� + 5?
c + 5??c?)(:�uu(c))�'
 + (5
� + 5

c)(:�u (c))�'
 + 5��(:�(c))�'
x"c"9 =y�@� − ! ! &�(c)"c"9 + &_�'�'
(�)                                              y�@�    (38) 

 (:�(�))�'
 = zL D(@�{)BEDFBGH(@)
IDFBGH(DFBGH)  = zL D@KEDFH(@)

IDFH(DFH) =
 zL D@KEDFH(@)

?KDFR                                                                                        (39) 

(:�(�))�'
 = zL DMH 8N
��'
 + N?�� + NO���
 + ++. . ;    (40) 
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Where: N
 = %��
(��
), N? = %��?(��
) , NO = %��O(��
)  
and &�(�) = =
=�(�) + =?=��
(�) &_�'�'
(�) = =̃
=�'O(�) + =̃?=�'?(�)   (41) 

Inserting Equation (39) and (40) into (36), collecting the like terms and equating the 

corresponding coefficients of ��'O, ��'?, �+" ��'
 yields: L̀� = �MHKEK�(�'
)[R            (42) 

Where \us are obtained recursively by \
 = T
 

\? = T? − %�'?(�'O)\
%�'O(�'O)  

\O = TO − IDGH(DGR)[H
IDGR(DGR) − IDGH(DGK)[K

IDGK(DGK)                                                          (43) 

and 

T
 = h5�� + (+ + 1)5

 + +(+ + 1)5??(+ + 2)(+ + 3) i N
                                                               
T? = V5
� + +5?
+ + 2 W N
 +  h5�� + +5

 + +(+ − 1)5??(+ + 1)(+ + 2) i N?            
TO = 5?�N
 + QXHY'(��
)XKH�'
 S N?++ QXYY'(��
)XHH'(��
)(��?)XKK�(�'
)(�'?) S NO   (44) 

Continuing with the process, using m = 2 and varying the value of s i.e. (s = 1, 2, 3, …) and 

expanding Equation (36) the following recursive form is obtained: \
 = T
 

\? = T? − %�'O(�'f)\
%�'f(�'f)  

\O = TO − %�'?(�'f)\
%�'f(�'f) − %�'?(�'O)\?%�'O(�'O)  

\f = Tf − IDGH(DGg)[H
IDGg(DGg) − IDGH(DGR)[K

IDGR(DGR) − IDGH(DGK)[R
IDGK(DGK)         (45)                                                                       

Where: 

T
 = h5�
 + (+ + 1)5
? + +(+ + 1)5?O(+ + 2)(+ + 3) i   
T? = h5�� + (+ + 1)5

 + +(+ + 1)5?(+ + 2)(+ + 3) i N
   +  V5�
 + +5
? + +(+ − 1)5?O(+ + 2)(+ + 3) W N?   
TO = V5
� + +5?
+ + 2 W N
 +  h5�� + +5

 + +(+ − 1)5??(+ + 1)(+ + 2) i N? 

      + h5�
 + (+ − 1)5
? + (+ − 1)(+ − 2)5?O+(+ + 1)(+ + 2) i NO 
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Tf = 5?�N
 +  h5
� + (+ − 1)5?
+ + 1 i N? + h5�� + (+ − 1)5

 + (+ − 1)(+ − 2)5??+(+ + 1) i NO 

+ QXYH'(��?)XHK'(��?)(��O)XKR�(��
)(�'
) S Nf                                                               (46) 

and for  m = 2, s = 2, we obtain: \
 = T
 

\? = T? − %�'f(�'m)\
%�'m(�'m)  

\O = TO − %�'O(�'m)\
%�'m(�'m) − %�'O(�'f)\?%�'f(�'f)  

\f = Tf − %�'?(�'m)\
%�'m(�'m) − %�'?(�'f)\?%�'f(�'f) − %�'?(�'O)\O%�'O(�'O)  

\m = Tm − IDGH(DGn)[H
IDGn(DGn) − IDGH(DGg)[K

IDGg(DGg) − IDGH(DGR)[R
IDGR(DGR) − IDGH(DGK)[g

IDGK(DGK)                                         (47) 

Similarly, the recursive form for m = 2, s = 3 were obtained as follows: \
 = T
 

\? = T? − %�'m(�'q)\
%�'q(�'q)  

\O = TO − %�'f(�'q)\
%�'q(�'q) − %�'f(�'m)\?%�'m(�'m)  

\f = Tf − IDGR(DGr)[H
IDGr(DGr) − IDGR(DGn)[K

IDGn(DGn) − IDGR(DGn)[R
IDGg(DGg)                                                                                                      

\m = Tm − %�'?(�'q)\
%�'q(�'q) − %�'?(�'m)\?%�'m(�'m) − %�'?(�'f)\O%�'f(�'f) − %�'?(�'O)\f%�'O(�'O)                                              
\q = Tq − IDGH(DGr)[H

IDGr(DGr) − IDGH(DGn)[K
IDGn(DGn) − IDGH(DGg)[R

IDGg(DGg) − IDGH(DGR)[g
IDGR(DGR) −  IDGH(DGK)[n

IDGK(DGK)                  (48) 

Continuing with the procedure for m = 3, 4, . . . and varying s i.e. ( s =  0,1,2,3,…) and 

expanding Equation (1) fully, the following  general expression for T| �+" \|  is obtained as 

shown: 

\| = T| − ∑ IDGBG}GKF~(DGBG}GKF�)
IDGBG}GKF�(DGBG}GKF�)|�
u�
 \u                 l = 1,2,3, … � + /.     (49) 

Where T|:   

T| = ∑ �∑ (X�,}F~G�G�)(�!)(�DGKF�B��Y �M�~��H   
���HBG�F~(�'('�'O�|�
)         l = 1,2,3, … � + / + 1   (50) 

Provided � ≥ l − � + 1 

In order to establish the validity of Equations (49) and (50), the following theorems were 

stated. 

2.1. Theorem 
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The parameters  \�'('
 of the error estimate is given by the recurrence relation: 

\| = T| − ∑ IDGBG}GKF~(DGBG}GKF�)
IDGBG}GKF�(DGBG}GKF�)u�
|�
 \u           , l = 1,2,3, … � + /     (51) 

Where: T|: 

T| = ∑ �∑ (X�,}F~G�G�)(�!)(�DGKF�B��Y �M�~��H   
���HBG}G�F~(�'('�'O�|�
)         l = 1,2,3, … � + / + 1                       (52) 

2.2. Proof 

The principle of mathematical induction was employed over the summation variables m and 

v to establish the validity of Equation (50). This was done by varying one of these variables 

at a time while the other was fixed. 

T| = � �∑ (5�,(�|'u'�)(�!)(��'?�u���� �Nu  
�
�
�'('u�|(+ + / + � + 3 − l − �)

|

u�

 

Firstly, let v = 1 in Equation (50), that is, it is assumed that Equation (50) is true for v = 1, so 

that: 

T
 =   �∑ (X�,}G�)(�!)(�DGHB��Y �MH 
���HH (�'('�'?�
)         �. : � = l = 1                                            (53) 

Now, using induction on m for fixed v = 1, it is shown that Equation (50) holds for m=1, that 

is, for m=1: 

T
 = �∑ (5�,('�)(�!)(��'

��� �N
 
�
�

 (+ + / + 3 − �)              �. : � = 1 

= �5�,( + 5
,,('
(+ + 1)(+ + / + 2) � N
 

= �XY,}'(�'
)XH,,}GH(�'('?) � N
                                                                                             (54) 

Which is the same as �1 in equation (54) when / = 0, / = 1, / = 2  / = 3, �+"  / = 4  

respectively. 

Hence, Equation (53) is true for m=1. Thus we now assume that Equation (53) is true for m= 

l which gives: 
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T
 =    �∑ (X�,}G�)(�!)(�DGH���Y �MH 
���H� (�'('�'?�
)                     � =       �                                   (55) 

It is then shows that Equation (53) holds for � = � + 1. 

From the construction of   �1, for m=1 up to m= l: 

T
 = �∑ (5�,('�)(�!)(��'
���� )�N
  
�
�

 (+ + / + � + 3 − �) + ��5�'
,('�'
�8� + 1)!;(�'
�'
)�N
�
�
�'
 (+ + / + � + 2 − �)  

� ∑ (5�,('�)(�!)(��'
���� ) 
�
�

 (+ + / + � + 3 − �) + ��5�'
,('�'
�8� + 1)!;(�'
�'
)�

�
�
�'
 (+ + / + � + 2 − �) � N
 

= �∑ (X�,}G�)(�!)(�DGH)�GH��Y �MH
���H�GH (�'('�'?�
)                                                                                              (56) 

Thus, since equation (49) holds for � = � + 1, hence it holds for all positive values of m 

Next, it is assumed that Equation (49) holds for l = �, that is: 

T� = ∑ �∑ (X�,}F�G�G�)(�!)(�DGKF�)B��Y �M����H   
���HB (�'('�'O���
)                                                                     (57) 

and then it is shown that it holds for l = � + 1. That is: 

T�'
 = ∑ �∑ (X�,}F�G�G�)(�!)(�DGKF�)B��Y �M��GH��H   
���HBG�F�FH(�'('�'O���
)                                                                (58) 

But by the construction of �l+1: 

T�'
 = ∑ �∑ �X�,}F�G�G�)(�!)(�DGKF��B��Y �M����H   
���HBG�F�(�'('�'O���
)  +  + �∑ (X�,}F�GH)(�!)(�DGKF�)B��Y �M�GH  

���HB (�'('�'O���
)              (59) 

T�'
 = ∑ �∑ (X�,}F�G�G�GH)(�!)(�DGKF�)B��Y �M��GH��H   
���HBG�F�(�'('�'O���
)                                                                 (60) 

Thus, from the foregoing it can be concluded that Equation (49) and (50) hold for all values 

of m and v and this confirms the validity of the theorem. 

4. CONCLUSION 

The derivation of a general formula for the integrated formulation of the tau method for m-th 

order linear ODEs has been presented. The formulae are recursive and hence makes for easy 

determination of particular cases for which m will be specified. The present error estimation 
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technique shows a remarkable improvement over these works done on the subject of error 

analysis of the Tau method as it leads to error estimation formula with wider scope of 

application. Also, the estimate proposed here does not involve any iteration for linear 

problems nor matrix inversion. This is desirable in handling non-linear problems, where s, the 

number of over determination of the equation being considered, depends on n, the degree of 

the Tau approximant being sought and for large value of n, (m + s) then becomes very large. 

All these features are desirable and render the error estimation technique and the formula 

attractive for use with software design for the Tau method. 
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