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Abstract 
 

In this paper, we propose a family of Hybrid Backward Differentiation Formulas 

(HBDF) for direct solution of general second order Initial Value Problems (IVPs) of 

the form  , ,y f x y y  . The method is derived by the interpolation and 

collocation of the assumed approximate solution and it’s second derivative at 

, 1,2,..... 1n jx x j k   and n kx x   respectively, where k is the step 

number of the methods. The interpolation and collocation procedures lead to a system 

of (k+1) equations, which are solved to determine the unknown coefficients. The 

resulting coefficients are used to construct the approximate continuous solution from 

which the Multiple Finite Difference Methods (MFDMs) are obtained and 

simultaneously applied to provide the direct solution to IVPs. Two specific methods 

for k=2 and k=3 are used to illustrate the process. Numerical examples are given to 

show the efficiency of the method. 

 

 

Keywords: Hybrid method, Backward Differentiation Formulas, Collocation, Interpolation, Second Order, Multiple 

 Finite Difference. 

 

1.0     Introduction 

Many scientific and engineering problems are described using apparatus of Ordinary Differential Equations (ODEs), where 

the analytic solution is unknown. Much research has been done by the scientific community on developing numerical 

methods which can provide an approximate solution of the original ODE. In recent years many review articles and books 

have appeared on numerical methods for integrating ODEs, particularly in stiff cases [1]. Stiff problems are very common 

problems in many fields of the applied sciences: control theory, biology, chemical engineering processes, electrical networks, 

fluid dynamics, plastic deformation etc.  

Most of numerical methods for solving Initial Value Problems (IVPs) for ODEs will become unbearably slow when the 

ODEs are stiff. The most popular multistep methods families for stiff ODEs are formed by the Backward Differentiation 

Formulae (BDF or Gear methods) methods, Rosenbrock methods, implicit or diagonally implicit Runge-Kutta methods [1-3]. 

In this paper we are suggested a construction of two and three step HBDF method, it is self-starting and can be applied for the 

numerical solution of IVPs (Cauchy problem) for second-order ODEs. Development of 

HybridBackwardDifferentialFormulas Methods (HBDF) for solving ODEs can be generated using different methods.We use 

the collocation technique for the construction of implicit HBDF. 

Block methods for solving ODEs have initially been proposed by Milne [4].The Milne’s idea of proceeding in blocks was 

developed by Rosser [5] for Runge-Kutta method. Also block Backward Differentiation Formulas (BDF) methods are 

discussed and developed by many researchers [6-14]. The method of collocation and interpolation of the power series 

approximate solution to generate continuous LMM has been adopted by many researchers among them are [15-16] 
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The paper is presented as follows: In section 2, we discuss the basic idea behind the algorithm and obtain a continuous 

representation Y(x) for the exact solution y(x) which is used to generate members of the block method for solving IVPs. In 

section 3, we briefly discuss the order and error constant and convergence analysis of the method. Finally, we present  

numerical results and concluding remarks. 

 

2.0 Development of Method 
The mathematical formulation of physical phenomena in science and engineering often leads to initial value problems of the 

form: 

      00 ,,,,  ayyayyyxfy
      (1)  

We seek an approximation of the form 

  j
sr

j

j xxY 





1

0


         (2) 

Where  , , jx a b  are unknown coefficients to be determined and 1 r k and 0s  are the number of interpolation 

and collocation points respectively. We then construct our continuous approximation by imposing the following conditions 

  1,...,.2,1,0,   kjyxY jn         (3) 

         (4) 

We note that ny
 is the numerical approximation to the analytical solution    , , ,n n n n ny x f f x y y        

 . 

Equations (3) and (4) lead to a system of (k+1) equations which is solved by Cramer’s rule to obtain
j
. Our continuous 

approximation is constructed by substituting the values 
j

 into equation (2). After some manipulation, the continuous 

method is expressed as 

       
1

2

0

k

j n j n k n k

j

Y x x y x y h x f   


  



        (5) 

Where    ,j kx x   and  x  are continuous coefficients.  We note that since the general second order ordinary 

differential equation involves the first derivative, the first derivative formula 

       
1

2

0

1 k

j n j n k n k

j

Y x x y x y h x f
h

   


  



 
      

 
     (6) 

   xxY 
          (7) 

  0 aY
          (8) 

 

2.1 Specification of Methods 

2.1.1  Two Step Methods with one- off -step point at interpolation. 
To derive these methods, we use Eq.(5)  to obtained a continuous  2-step HBDF method with the following specification : 

r=3,s=1,k=2. We also express    ,j x x   and  k x  as a functions of t, where 
nx x

t
h


  to obtain the continuous 

form as follows: 

  2

0 1 1 3 3 2 2

2 2

n n n
n

y x y y y h f    


          (9) 

where 

32

0
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1 ttt 

 

32

1
7

4

7

24

7

27
ttt 

 
 

Journal of the Nigerian Association of Mathematical Physics Volume 27 (July, 2014), 21 – 28 

  knkn fxY  



23 

 

   xxj  ,

Construction and Implementation…         Mohammed and Adeniyi            J of  NAMP 
 

32

2

3
21

8

7

16

21

40
ttt 

 

 32

2 253
14

1
ttt 

 

Evaluating (9) at 2nx x   yields Hybrid Two step implicit method 

2

2 1 3 2

2

1 10 16 1

7 7 7 7
n n n n

n
y y y y h f  


         (10) 

Taking the second derivative of equation (9), thereafter, evaluating the resulting continuous polynomial solution at 
3

2
n

x x


  

we generate additional methods 

2 2

3 1 3 2

2 2

1 3 7 1

2 2 8 2
n n n

n n
y y y h f h f 

 
          (11) 

Since our method is design to simultaneously provide the values of 
1 3 2

2

, ,n n
n

y y y 


at a block point
1 3 2

2

, ,n n
n

x x x 


, the 

two equations (10)-(11) are not sufficient to provide the solution for three unknown
1 3 2

2

, ,n n
n

y y y 


. Thus, we obtain an 

additional method from (8), given by
2

0 0 1 3 2

2

42 82 162 80 9h y y y h f       (12) 

The derivatives are obtained from (7) by imposing that    , , , 0,...2,n nx j v j       thus, we have 
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2.1.2 Three Step Methods with one- off -step point at interpolation. 
To derive this methods, we use Eq.(5)  to obtain a continuous  3-step HBDF method with the following specification : 

r=4,s=1,k=3. We also express  and  k x  as a functions of 

t, where 
nx x

t
h


  to obtain the continuous form as follows 

  2

0 1 1 2 2 5 5 3 3

2 2

n n n n
n

y x y y y y h f      


         (13) 
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 432

3 2111910
56

1
ttt 

 

Evaluating (13) at 3 nxx
 yields Hybrid Three step implicit method 

2

3 1 2 5 3

2

1 5 51 88 3

20 14 28 35 28
n n n n n

n
y y y y y h f   


          (14) 

Taking the second derivative of equation of equation (13), thereafter, evaluating the resulting continuous polynomial solution 

at 
2 5

2

n
n

x x x x


   we generate two additional methods 
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3

2

2

5

2

21

2

5
608

115

76

35

608

975

304

215

608

63






 n

n
nnn

n
fhfhyyyy

   (16) 

Since our method is design to simultaneously provide the values of 
1 2 5 3

2

, , ,n n n
n

y y y y  


at a block point

1 2 5 3

2

, , ,n n n
n

x x x x  


, the three equations (14)-(16) are not sufficient to provide the solution for three unknown

1 2 5 3

2

, , ,n n n
n

y y y y  


. Thus, we obtain an additional method from (8), given by 

2

0 0 1 2 5 3

2

420 903 1850 1875 928 75h y y y y h f           (17) 

The derivatives are obtained from (7) by imposing that    , , , 0,...3,n nx j v j       thus, we have 
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3.0 Error Analysis and Zero Stability 
Following [15,17] we define the local truncation error associated with the conventional form of (5) to be the linear difference 

operator 

        2

0

;
k

j v v

j

L y x h y x jh y x vh h y x jh  


             (18) 

Assuming that y(x) is sufficiently differentiable, we can expand the terms in (18) as a Taylor series about the point x to 

obtain the expression 

     0 1; ..., ...,q q

qL y x h C y x C hy C h y x            (19) 
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where the constant coefficients , 0,1,...qC q    are given as follows: , 0,1,...qC q   
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





 
According to [18],  method (5) has order p if 

0 1 1 2... 0, 0P P PC C C C C        

Therefore, 
2pC 

 is the error constant and 
   22

2

pp

p nC h y x


   the principal local truncation error at the point nx . It is 

establish from our calculations that the HBDF have higher order and relatively small error constants as displayed in the Table 

1. 

In order to analyze the methods for zero stability, we normalize the HBDF schemes and write them as a block method from 

which we obtain the first characteristic polynomial  R  given by 

        0 1
det 1kR RA A R R          (20) 

Where 
 0

A is the identity matrix of dimension k+1,
 1

A is the matrix of dimension k+1 

Case k=2. It is easily shown that (10)-(12) are normalized to give the first characteristic polynomial  R  given by  

        1det 210  RRARAR
 

Where 
 0

A an identity matrix of is dimension three and 
 1

A  is a matrix of dimension three given by 

 



















100

100

100
1A

 

Case k=3. It is easily shown that (14)-(17) are normalized to give the first characteristic polynomial  R  given by  

        1det 210  RRARAR
 

Where 
 0

A an identity matrix of is dimension four and 
 1

A  is a matrix of dimension four given by 

 























1000

1000

1000

1000

1A

 
Following [15] the block method by combining k+1 HBDF is zero-stable, since from (20), 

  0R  satisfy 1 1...,jR j k   and for those roots with 
jR =1, the multiplicity does not exceed 2. The block 

method by combining k+1 HBDF is consistent since HBDF have order 1P  . According to [18], we can safely ascertain the 

convergence of HBDF method. 
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Table 1:Order and Error Constants For the HBDF methods. 
Step number Method order Error constant 

2 (10) 2 

24

1


 
 (11) 2 

64

21


 
 (12) 2 

8

63


 
3 (14) 3 

1120

23


 
 (15) 3 

24

107


 
 (16) 3 

24

641


 
 (17) 3 

8

535


 
 

 

 

4.0 Numerical Example 
The HBDF methods are implemented as simultaneous numerical integration for IVPs without requiring starting values and 

predictors. We proceed by explicitly obtaining initial conditions at n kx  , n=0,k,….,N-k using the computed values 

 _n k n kY x y  and  _n k n kx    over sub-intervals    0 , ,..., ,k N K Nx x x x  which do not overlap. We give 

examples to illustrate the efficiency of the methods. 

We report here a  numerical example taken from the literature. 

Problem [19] 

    1.0,10,10,010001001  hyyyyy
 

  xexy 
 

 

Table 2: Showing Exact solutions and the computed results from the proposed HBDF methods  
x Exact Solution K=2 K=3 

0 1 1 1 

0.1 0.9048374180 0.9048343762 0.9048371727 

0.2 0.8187307531 0.8187335879 0.8187308287 

0.3 0.7408182207 0.7408166016 0.7408181387 

0.4 0.6703200460 0.6703216772 0.6703198322 

0.5 0.6065306597 0.6065291218 0.6065307224 

0.6 0.5488116361 0.5488131391 0.5488115690 

0.7 0.4965853038 0.4965840964 0.4965851435 

0.8 0.4493289641 0.4493301541 0.4493290111 

0.9 0.4065696597 0.4065686593 0.4065696088 

1.0 0.36787944 0.3678804248 0. 3678794425 
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Table 3: Comparing the absolute errors for two step and three step (HBDF) to errors in [19] for 

problem 1  
x Error in K=2 

(HBDF) 

Error in K=2 

(BDF) [19] 

Error in K=3 

(HBDF) 

Error in 

K=3(BDF) [19] 

0 0.000000000E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00 

0.1 3.041800000E-06 2.940180000E-04 2.453000000E-07 1.111124000E-05 

0.2 2.834800000E-06 5.571550000E-04 7.560000004E-08 5.749050000E-05 

0.3 1.619100000E-06 7.512790000E-04 8.200000001E-08 9.210130000E-05 

0.4 1.631200000E-06 9.202740000E-04 2.137999999E-07 4.078390000E-05 

0.5 1.537900000E-06 10.29514000E-04 6.270000008E-08 2.530190000E-05 

0.6 1.503000000E-06 11.26415000E-04 6.710000000E-08 4.725860000E-05 

0.7 1.207400000E-06 11.80252000E-04 1.603000000E-07 1.893470000E-05 

0.8 1.190000000E-06 12.27376000E-04 4.700000000E-08 4.288120008E-05 

0.9 1.000400000E-06 12.42326000E-04 5.089999999E-08 7.966800000E-05 

1.0 9.848000000E-07 12.54553000E-04 2.499999985E-09 2.941190000E-05 

 

Problem 2 

    1.0,10,10,0  hyyyy
 

Exact Solution 
  )sin()cos( xxxy 

 

 

Table 4:  Showing exact solutions and the computed results from the proposed methods for 

problem 2 
x Exact Solution K=2 K=3 

0 1 1 1 

0.1 1.094837582 1. 094781733 1.094844138 

0.2 1.178735909 1.178587196 1.178753798 

0.3 1.250856696 1.250645384 1.250886052 

0.4 1.310479336 1.310165070 1.310511922 

0.5 1.357008100 1.356627096 1.357046032 

0.6 1.389978088 1.389488483 1.390021138 

0.7 1.409059874 1.408502167 1.409102595 

0.8 1.414062800 1.413395513 1.414104578 

0.9 1.404936878 1.404202948 1.404977272 

1.0 1.38177329 1.380933499 1.381809897 

 

 

Table 5: Comparing the absolute errors in new methods for problem 2 
x Error in K=2 Error in K=3 

0 0.000000000E+00 0.000000000E+00 

0.1 5.584900000E-05 6.556000000E-06 

0.2 1.487130000E-04 1.788900000E-05 

0.3 2.113120000E-04 2.935600000E-05 

0.4 3.142660000E-04 3.258600000E-05 

0.5 3.810040000E-04 3.793200000E-05 

0.6 4.896050000E-04 4.305000000E-05 

0.7 5.577070000E-04 4.272100000E-05 

0.8 6.672870000E-04 4.177800000E-05 

0.9 7.339300000E-04 4.039400000E-05 

1.0 8.397910000E-04 3.660700000E-05 

 

5.0 Conclusion 
In this paper, we suggested and implemented new, more general versions of the two and three Step Block Hybrid Backward 

Differential Formula method. 
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