JOURNAL OF RESEARCH IN NATIONAL DEVELOPMENT VOLUME § NO, 1 ISSN 1596 - 8308 JUNE 2007.

ANALYSIS OF THE WINDOWS VISTA SECURITY MODEL AND
THE IMPLICATIONS IN THE NIGERIAN MARKET

M.A. SHAFI'Tand M. D. ABDULMALIK
DEPARTMENT OF MATHEMATICS/COMPUTER SCIENCE,FEDERAL UNIVERSITY OF
TECHNOLOGY MINNA, NIGER STATE

ABSTRACT

This paper provides an in-depth technical assessment of the security improvements implemented
in the new Microsoft Windows Vista (officially released February, 2007), focusing primarily on the areas
of User Account Protection and User Interface Privilege Isolation. This paper discusses these features and
touches on several of their shortcomings. It then demonstrates how it is possible to combine these attacks to
gain full control over the machine from medium integrity level. We also looked at the implications in the

Jast growing Nigerian market.

Key Words— File Virtualization, Registry Virtualization, Integrity Level, UAP, LUA, UIPI, Computer
security, Windows Vista, Windows Resource Protection.

INTRODUCTION

Windows Vista is a radical departure from
prior versions of the Windows operating system.
With its introduction, enhancements have been
made to virtually all aspects of the Windows
security model. The operating system comes in five
different versions ie. Home Bases, Business,
Premium, Ultimate, etc (with a sixth, "Starter"
edition designed for developing countries), but only
Windows Vista Ultimate--the most expensive one--
includes the maximum level of protection. These
changes should decrease the ease by which the
operating system can be compromised.

As this paper is primarily focused on
changes between Vista and the preceding Operating
Systems, the reader is expected to have familiarity
with the traditional Windows security model—
including general knowledge of Access Control
Lists (ACLs), System ACLs (SACLs) versus
Discretionary ACLs (DACLSs), Security Identifiers
(SIDs),

ScoPE OF WORK

This paper focuses on attacks against the Windows
Vista security model from the perspective of
malicious code. The scenario addressed in this
paper is an out-of-the-box configuration that a
typical user will see when presented with a new
Windows Vista installation. In this configuration
the user is a Protected Administrator (Microsoft,
2006) using Internet Explorer 7 to browse a
malicious website that exploits vulnerability
(Microsoft, 2005). This vulnerability inadvertently
introduces malicious code running with low
privileges on to the host. In this paper, we discuss a
technique whereby a weakness in Windows Vista
builds will allow this malicious code to gain full
control over the machine, ultimately acquiring
LocalSystem privileges.

LIMITATIONS

Malicious . code that is already running
with full LocalSystem privileges is outside of the
scope of this paper, since the malicious code has
roughly the same capabilities as it had in previous
versions of Windows. This paper only discusses the
elevation of privileges to LocalSystem. Kernel-
mode root kits are also outside the scope of this
paper. An assessment of Windows Vista kernel
mode security and new Windows Vista TCP/IP
network stack will be covered in a separate research
papers.

USER ACCOUNT PROTECTION (UAP)
Windows Vista introduces a security
feature, User Account Protection (UAP), which is
also known as Least-Privilege User Accounts or
Limited User Accounts (LUA). User Account
Protection feature is that when programs write to
protected areas of the file system and registry, these
writes are actually stored in a separate area,
maintained per user, called the Virtual Store. This
is very similar to what is done on a Terminal
Server, and in fact | wonder why the Virtual Store
is stored in C:\Virtual Store rather than under each
user's Documents and Settings folder as is done on
Terminal Server. This means that when running
without restriction, the user is capable of activities
such as installing software, writing to
HKEY_LOCAL_MACHINE, starting drivers,
starting services, etc. :
However, all processes launched by the
Protected Administrator run with minimal
privileges. When a Protected Administrator
launches a program from the Start Menu, the
program will run in a restricted context with a
smaller subset of the privileges than the user
actually possesses. If the program. requires
administrative privileges (i.e., it won’t function
properly without them), the Protected

111

JOURNAL OF RESEARCH IN NATIONAL DEVELOPMENT VOLUME § NO. 1ISSN 1596 - 8308 JUNE 2007.

Administrator can run the process unrestricted. By
running the process unrestricted, the process
inherits the full privileges of the user (referred to as
elevation). A program will be run in an elevated
state using one of the mechanisms discussed in
Section 3.0 below. Whenever a program is to be
clevated, a popup box will appear asking the user to
approve or deny. It is also possible to use a
standard user account -- a user account without
administrator privileges, rather than a Protected
Administrator account. Standard user accounts
were available in Windows XP. Although
Microsoft recommends the use of standard user
account, the default behavior when installing
Windows XP or Windows Vista is to create an
administrator user account. To create a standard
user account, the user must perform additional
manual steps. Therefore, we will only cover the
default Windows Vista user account behavior that a
general user would encounter after installing
Windows Vista, This is not meant to imply that
there are no privilege. escalation attacks possible
from a standard user account; rather, we focused
our attention toward the most likely user
configuration (Microsoft, 2006). :
MANDATORY INTEGRITY CONTROL (MIC)
Mandatory integrity control (referred to
here as integrity levels) is a new feature added in

‘callCreateRemoteThread,

Windows Vista. It is controlled by an Access
Control Entry (ACE) in the System Access Control
List (SACL) of a securable object (e.g., a file,
process, registry key, etc.). Integrity levels can be
enabled/disabled via the registry key
HKEY_LOCAL_MACHINE\Software\Microso fi\
Windows\CurrentVersion\Policies\System\Enable
MIC. Amusingly, the integrity level is associated
with SACLs A process cannot interact with another
process that has a higher integrity level. So
CreateRemoteThread, SetThreadContext,
WriteProcessMemory, and related APls will fail
from a lower integrity process when used against a
higher integrity process. This is meant to prevent
privilege escalation attacks. However it is still
possible for:
1. A higher integrity ~ process to
SetThreadContext,
WriteProcessMemory, etc. against a lower integrity
process.
2. Processes of any integrity level to interact using
inter-process communication (named pipes, etc.).
3. A lower integrity server to impersonate a higher
integrity client using APls such as
ImpersonateNamedPipeClient, as long as the
impersonation level of the client allows it.

The following table shows the integrity
levels and their effective permissions:

Integrity
Access Level

System Privileges

High

Administrative (can install files to the
Program Files folder and write to sensitive registry areas
like HKEY _LOCAL_MACHINE) '

Medium
folder and write to

User (can cteate and modify files in the user's Documents

user-specific areas of the registry, such as
HKEY CURRENT USER)

Low

or the

Untrusted (can only write to low integrity .
locations, such as the Temporary Internet Files\Low folder

HKEY CURRENT USER\Software\LowRegistry key)

The integrity access levels are governed by the following SACL ACEs:

UI PRIVILEGE ISOLATION (UIPI

Directly related to integrity levels is User
Interface Privilege Isolation (UIPI), which was
added to prevent privilege escalation attacks such

Security Identifier (SID) Integrity Level
S-1-16-16384 System Mandatory Level
S-1-16-12288 High Mandatory Level
S-1-16-8192 Medium Mandatory Level
S-1-16-4096 Low Mandatory Level

)

as Shatter (Russinovich & Solomon, 2005). If a
lower privileged process is able to send window
messages (using the SendMessage and

112

Pos'tMessage APIs) to a higher privileged process,
the lower privileged process can cause arbitrary
_code execution in the context' of the higher

- privileged process. To address this, in Vista it is no
* longer possible for a process of a lower integrity

level to send window messages to a higher integrity
process. This is etiforced by the windowing and
graphics subsystem known as USER (presumably
within the system driver win32k.sys). Certain
processes, such as uxss.exe (Microsoft User
Experience Subsystem) and consent.exe (Consent

Ul for admmrstratwc applications) are - two
SeChangeNoufyPrwrlege enabled
SeTimeZonePrivilege disabled
SelncreaseWorkingSetPrivilege - disabled
- SeUndockPrivilege disabled
; SeShutdownPrmlege disabled

. RESTRICTED PROCESS

procésses that have the UI Access Mandatory
Level, because they need to mteract with the
desktop.

UAP is synonymous with restricted
process. A restricted process is one with a restricted
token that has some of the ‘user's privileges
removed and certain SIDs marked as “deny only”.
Restricted processes - are setup using the
CreateRestrictedToken API. ,
A restricted process created with UAP enabled has

" a reduced set of privileges:

By contrast an unrestricted process created by an administrator has a much larger set of prnvr]eges :

SeChangeNotifyPrivilege enabled
SeSecurityPrivilege " disabled
- SeBackupPrivilege disabled
‘ SeRestorePrivilege disabled
~ ... SeSystemtimePrivilege - disabled
. SéShutdownPrivilege .~ disabled
" 'SeRemoteShutdownPrivilege disabled
SeTakeOwnershipPrivilege disabled
SeDebugPrivilege disabled
-SeSystemEnvironmentPrivilege disabled
. SeSystemProfilePrivilege disabled
_ SeProfileSingleProcessPrivilege disabled
; ‘SelncreaseBasePrnontyPrrvnlege o disabled
“ SeLoadDriverPrivilege - disabled
SeCreatePagefilePrivilege ‘ disabled
SelncreaseQuotaPrivilege disabied
SeUndockPrivilege disabled
SeManageVolumePrivilege disabled
SelmpersonatePrivilege enabled
SeCreateGlobalPrivilege , enabled -
SeCreateSymbolchmkPr'vrlege disabled
Selncrease WorkingSetPrivilege disabled
SeTimeZonePrivilege disabled

113

If a privilege is disabled, it means it is
ignored during access checks but can be enabled by
the process. If a privilege is removed instead of
disabled, as is the case for restricted processes, it
cannot be enabled.

UNRESTRICTED PROCESSES (ELEVATION)
A process will be elevated under a few

circumstances:

1. If the application is an installer (has the extension

“.msi”, matches a common installer like InstallShield,

is named setup.exe, etc.).

2. Application Compatibility (Slashdot, 2006).

(a) If the application has an application compatibility

entry in the registry under

HKEY_CURRENT_USER\Software\Microsof\Wind

owsNT\CurrentVersion\AppCompatFlags\Layers\<pa

th_to_executable> with the value RUNASADMIN,

(b) AppCompat database entry (a file that ends with

<application_name>.sdb) created with
CompatAdmin.exe.
3. The application’s manifest file

(<appname>.exe.manifest) or resource (embedded
within the executable) that contains
requestedExecutionLevel of requireAdministrator,
4. Manually by the user right-clicking on the
executable and selecting “Run Elevated...” in
Windows Explorer.
5. Also when a program is launched from an already
privileged process.
THE LEGACY SHELL TRICK

WinLogon runs unrestricted and with high
integrity. An executable that is launched from here
via the “File -> New Task” menu option of Task
Manager runs wi1 full privileges. This does not seem
to have been intentional, “The only way for the Shell
to run as admin!; trator is to log on with the machine
administrator ac~ount (Built-in Administrator).” This
statement is inc>curate. It was possible to. kill the
existing Explor- ..exe from Task Manager and restart
it via “File -> New Task” menu option, and entering
“explorer”. Task Mianager launches processes via
CreateProcess inst:ad of CreateRestrictedProcess, so
Windows Explo-:r is launched without restrictions
and operates like ihe legacy shell from Windows XP,
That is, there will no longer be any consent prompts
when launching applications, and files can be moved,
renamed, deleted without needing to elevate
(Newsham, 2007).

‘ 1

FILE AND REGISTRY VIRTUALIZATION

Microsoft has introduced file and registry
virtualization to retain applications backwards
compatibility. “Yhen lower privileged processes that
attempt to modify global locations fail due to lack of
permission, the data is instead transparently written to
a per-user location (known as virtualization). These
per-user locations- are checked before global
locations. In other words, the per-user location
overrides the global location (Newsham, 2007).
REGISTRY VIRTUALIZATION

Registry virtualization is implemented by
ntoskrnl and ntkrnlpa (i.e., the operating system
kernel itself). When running under a LUA process,
registry write attempts that fail (due to insufficient
permission) have their location changed from:
HKEY_LOCAL_MACHINE\Software to:
HKEY_CURRENT_USER\Software\Classes\Virtual
Store\MACHINE\Software.

FILE VIRTUALIZATION

File virtualization is implemented by the file
system filter driver luafv.sys. When running under a
LUA process, file write attempts that fail (due to
insufficient permission) have their location changed
from: C:\Progra~1(C:\Program Files) to

%UserProfile%a\AppData\Local\VirtuaiStore
\C\Progra~1 ’

For example, if a LUA process tries to
replace configuration file (e.g., %WinDir%\win.ini)
and lacks sufficient privileges to modify the real
%WinDir¥e\win.ini,. then win.ini is virtualized to the
per-user location, If that
user later reads from % WinDir%\win.ini, the user will
see hisher modifications (Newsham, 2007).
However, no other users will see these modifications.

FLAWS AND ATTACKS

Windows Vista has unique challenges in
trying to prevent privilege escalation attacks

compared to the approach taken by UNIX derivatives.
This section will focus on the privilege escalation
attacks that result from the approach Microsoft has
taken with Windows Vista.

If a higher integrity process uses registry
keys and configuration files that are writable by a
lower integrity process, then the security model is
tainted, as this permits a lower integrity process to
influence the behavior of a higher integrity process. In
this section, we will show a number of flaws in the
LUA implementation and, as a result, show how it
allows privilege escalation from medium integrity,
then medium integrity to high integrity, then high
integrity to LocalSystem.

UNIX SECURITY MODEL

UNIX has supported standard user accounts
with limited privileges for decades. Therefore, UNIX
programmers are well adjusted to accommodating
standard users. If a limited user wants to install a
program into a global location that the user doesn’t
have write access to, the user will need to su (the
swilch user command) to a user that has write access
to the global location (usually the root account). The
limited user accounts also serve as a form of
sandboxing. For example, it is common for the
Apache web server to run under the user account
apache. File permissions can be set to prevent apache
from reading/writing to anything the web server
doesn’t need access to. Then if the web server is
compromised, the attacker is restricted by the limited
access of the apache account. We have over-

114

JOURNAL OF RESEARCH IN NATIONAL DEVELOPMENT VOLUME § NO. 11SSN 1596 - 8308 JUNE 2007.

generalized this to avoid having to discuss specifics
(Linux Security Modules, chroot, etc.). Some UNIX
security models are quite similar to Windows Vista.
For example, SELinux also has mandatory access
controls and per-process privilege levels that are fixed
at the time of program execution.

WINDOWS VISA SECURITY MODEL

Windows Vista’s developers had to choose
the best way to improve the overall security model
while still retaining the most backward compatibility.
While most of their decisions seem reasonable, two
particular decisions lead to several seemingly
intractable implementation flaws.

First, Windows programmers have been
quite lax on leveraging and exercising rights and
privileges in the existing Windows security model. A
common behavior is to open a registry key or file for
all access, when really only read access was needed.
Another problem is making the assumption the user
has administrative privileges (and requiring more
privileges than actually needed). These assumptions
are not just made by third-party Windows
programmers—several Microsoft-implemented
programs also fail without administrative privileges
(e.g., the clock in the taskbar and shutdown.exe). For
this reason, Microsoft has been forced to use
“Application Compatibility” shims and file/registry
virtualization to allow pre-Vista programs to function
properly.

Second, Windows Vista can have several
processes created by the same user operating at
different integrity levels. This obviously creates an
incentive for a low integrity level process to try to
acquire the higher integrity level of the other process
created by the same user. Windows Vista tries to
close to obvious holes: for example, UIPI to prevent a
lower integrity piocess from sending window
messages to a higher integrity process. There is still
far too much overlap between processes running at
different integrity levels. A medium integrity
processes can modify registry keys under
HKEY_CURRENT_USER which are also used by
high integrity processes.

CASE 1: FROM MEDIUM INTEGRITY
LEVEL |

The low integrity escalation vulnerability
was used to place “malicious.exe” in the user’s
Startup folder.’ Programs in this folder are executed
when the user logs on to the machine. So for this
section, it is assumed the user logged off and later
logged back into the machine, resulting in the
execution of “malicious.exe”. Thus “malicious.exe” is
now exccuting at the medium integrity level. To
elevate privileges from medium to high integrity
level, it is necessary to find a high integrity process
that can be influenced by a medium integrity process.
Possible attacks are:

» Find a shared memory section used by a high
integrity process that is writable with medium
integrity level (Russinovich & Solomon, 2005).

» Find a configuration file or registry key that is
writable from a medium integrity process and used as
input in a high integrity process.
CASE 1L AGAINST WINDOWS RESOURCE
PROTECTION

The following attack could be done from
either LocalSystem or any account in the
Administrators group, as long as it is a non-LUA
process (since the SeTakeOwnership privilege is
needed). LocalSystem and Administrators both have
the ability to take ownership of files. Windows
Resource Protection, as mentioned previously, is
implemented as an ACL that only grants write access
to the Trustedinstaller SID. However, because
Administrators and LocalSystem both have sufficient
privilege to take ownership of securable objects, the
steps to evade WRP are to first enable the
SeTakeOwnership privilege, second take ownership
of the WRP-protected file or registry key, and finally
grant Administrators full access. These steps can be
done using the AdjustTokenPrivileges and
SetNamedSecuritylnfo. APIs. After that, the WRP-
protected file or registry key can be changed without
inhibition. There is no longer a thread that attempts to
detect changes to protected system files as was done
by SFP prior to Windows Vista. .Therefore, it is
possible to backdoor all system files at this stage. In
addition, driver signing restrictions will not help to
mitigate this attack.

FAILED ATTACKS .

This section includes attacks that were
unsuccessful. In some cases, the attack scenario was
thoroughly tested and Windows Vista seems to
properly defend against it. '

Silent installs do not result in any silent
elevation. Instead, a silent install runs with the
credentials of the user and the install fails if more
privileges are later required, without prompting the
user.

Another method, that didn’t work in testing,
would be to place a malicious desktop.ini in a folder
likely to be browsed Windows Explorer. Here is a
sample desktop.ini:

[.ShellClassinfo]
IconFile=%SystemRoot%\system32\shell32.dli
[conlndex=-173
LocalizedResourceName=@shell32.dl|,-12693
Windows Explorer checks for the presence of
desktop.ini when browsing a folder to allow per-
folder customization.

Attempts to override an existing executable
such as %WinDir%\system32\calc.exe by placing a
malicious calc.exe in the corresponding VirtualStore
tocation failcd. 1t was later determined that this is due
to Windows Vista excluding certain file
extensions(acm, cer, csh, hta, maf, maw, mst, pst, url,
etc) from virtualization (Newsham, 2007). This seems
to be undocumented in all of the Microsoft documents
mentioning file virtualization, however this is clearly
revealed by analyzing the file system filter driver that
implements file virtualization (luafv.sys).

115

JOURNAL OF RESEARCH IN NATIONAL DEVELOPMENT VOLUME 5 NO. 1 ISSN 1596 - 8308 JUNE 2007.

THE IMPLICATIONS IN THE NIGERIAN
MARKET

The marketing propaganda touting
Microsoft’s new Vista operating system as “the most
secure version of Windows yet” will not stop both
white and black hat hackers in Nigeria and beyond
from discovering Vista vulnerabilities.

Cost

Upgrading to Vista is very expensive, not
only the new software but often new hardware as
well. However, most Nigerians say that there is no
reason to dump a functioning PC running Windows
XP with Service Pack 2 and shell out $200(about
N26,000) to upgrade to Vista.

Safety and Security

Safety and security is the overriding feature
that most Nigerians will want to have Windows Vista
for, if they arc not into home catertainment or in any
of the specialty areas, they are just going lo feel safer
and more sceure by using it. Vista is light-years ahead
of XP from a built-in security perspective. But
Nigerians shoufd know that “No software is without
flaws, and Microsaft will be the last to deny that”.

Internet Crime

The FEconomic and Financial Crime
Commission (EFCC) have been doing a great job
tring to cutdown internet crime in Nigeria. With the
introduction of Windows Vista, the general
expectation is that their work will be made much
more easier. But we don’t want people to expect that
their computer is never going to be compromised
becouse of Vista; that’s simply not the case, the
nature of maliciousness on the Internct is changing
rapidly. 1t used to be that kids were trying to outdo
other kids. But now, it is criminals! Ready to exploit
the flaws in Vista.

116

CONCLUSION ‘ .

In the face of known Vista security holes,
Microsoft spokesmen have been unapologetic.
Stephen Toulouse, senior product manager at
Microsoft’s “Trustworthy Computing Group,” told
CNN, “We know from the outset that we won't ge! the
software code 100 percent right ... but Windows Vista
has multiple layers of defense.” Another Microsoft
representative told ZDNet, *“/t's important to
remember that no software is 100 percent secure.”

Still, we wonder, “Why is it important for us
to remember that no software is 100 percent
secure?”,

REFERENCES
Microsoft(2006). Access Control. MSDN [Online].
hitp://msdn.microsoft.com/library

Microsoi(2005). Decveloper Best Practices and
Guidclines for Applications in a Least Privileged
Environment. MSDN [Online].
http://msdn.microsofl.com/windowsvista

M. Russinovich, D. Solomon(2005). Microsoft
Windows Internals, Fourth

Edition: Microsoft Windows™ 2003, Windows XP,
and Windows 2000. Redmond, WA: Microsoft Press,
ch 8,

Slashdot(2006). First Windows Vista Security Update
Released [Onlinel.
http://it.slashdot.org/article.pl?sid=06/01/15/1910205

T. Newsham(2007). Windows Vista Networking: A
Broad Overview [Online].
http://www.symantec.com/aveenter/reference

