mﬂ 4" International Conference of School of Science and Technology Education (SSTE), FUT, Minna October, 2016 =x=

Fourth-order Four-stage Almost Runge-Kutta Methods for Initial Value
Problems

Abdulrahman Ndanusa,
Raihanatu Muhammad,
Zainab Ishaq Abdulazeez

Department of Mathematics,
Federal University of Technology, Minna, Nigeria

ABSTRACT

The process leading to the construction of Almost Runge-Kutta (ARK) methods is analysed, from
whence two new methods of orders four with four stages are constructed after a thorough and careful
assignment of values to the free parameters involved. Standard analysis established their convergence

and thus effectiveness. Numerical experiments confirmed not just their effectiveness but also their
efficiency as they proved to perform better than some existing methods.
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INTRODUCTION
The explicit Almost Runge-Kutta (ARK) method for solution of the initial value problem

v =fxy), y(xo) — ¥ (1
has the general form

Explicit Almost Runge-Kutta methods have the general form:

¥|To 0 1hE
Y||a 0 . |hE

C E

a a6 0 .0 0fec-4de=-A¢q
YS : : Lo 2 hE
TQ+1 G2 a3 - 0 0 (2

ue . bk 0 s
|22 o o B

Y lo & B b 01 b ,
ml|o o o ..0 1/0 0 yH
i _[31 Bz |33 BH 5: 0 Bo a EH]
A Vs

where A is an s X § strictly lower triangular matrix, wherein ¢! = b7 with the implication that the
last row of A is no different from the vector h. In similarity to Runge-Kutta (RK) methods, the vector
b represents the weights and is of length §; ¢ is equally a vector of length s representing the points at
which the function [ is evaluated; # and &, are vectors of length § whose components are made up of
entirely 1s and entirely zeros except the sth component which is 1, respectively (Abraham, 2010).

Since its introduction by [2], ARK methods have enjoyed a lot of contributions from various
researchers, among whom are [4], [S], [6] and [7].

MATERIALS AND METHODS
According to Butcher [3], a fourth-order four-stage ARK method takes the general form
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wherein the constituents of the first output approximations are given in (4) - (9)
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From (8) and (11),
e = .
6
It follows that,
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The Runge-Kutta stability conditions are therefore,
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Further computations resultin
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Upon computation of the elements of matrix {J the following‘two schemes named ARK4a
and ARK4b are obtained
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= ARKd4b with ¢’
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Convergence Analysis

A fundamental criteria for convergence of a numerical method is that the method be
consistent and stable. A method of order at least 1 is necessarily consistent. The two methods
ARK4a and ARK4b are both of order p = 4 > 1; thus they are consistent. Stability of
multivalued method s is guaranteed if all positive powers of the V' matrix have bounded
members. To satisfy this, it is sufficient that the absolute value of every eigenvalue of V, save
the Principal Eigenvalue (which equals 1), be less than 1.

For ARK methods, V isa 3 X 3 matrix whose eigenvalues are A = 1,0,0. Hence the powers
of V are bounded. This can be further illustrated using the Cay ley-Hamilton theorem which
states that every square matrix satisfies its characteristic equation . Inthe caseof ARK
methods, it implies V3 — V2 = 0, 0or V3 = V2, or V" = V2 for every n greater than 2. Hence
V™ is bounded.

Numerical Experiments

Problems 1 and 2 are sample problems that are solved by the methods ARK4a and ARK4b.
The results are obtained and compared with those of existing methods of similar order to
ascertain their effectiveness. The results are further presented in Tables 1 and 2.

Problem 1

y' =x+y, y@) =1
h=01 x¢&/[0,1]
yila) =2e* —ix—1

Problem 2
y' =x+ 2y, y(0)=1
h= 01, xe[0,1]
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TABLE 1 RESULTS OF PROBLEM 1
x Yexact Y@ Error Yarksa)  ETTOY(apgaa)y  Yarkan)  ETTOT(apgap)
2.0 1.000000000 1.000000000 0.000000000 1.000000000  0.000000000  1.000000000  0.000000000
0.1 1.110341836 1.110341764 0.000000072 1.110341783  0.000000053 1.110341781 0.000000055
0.2 1.242805516 1242805249 0.000000266 1.242805272  0.000000244 1242805269 0.000000247
0.3 1399717615 1399717113 0.000000502 1.399717139  0.000000476  1.399717135 0.000000480
0.4 1583649395 1.583648612 0.000000783 1.583648643  0.000000752 1.583648636 0.000000759
0.5 1.797442541 1.797441422 0.000001118 1.797441461  0.000001080 1.797441449 0.000001092
0.6 2.044237600 2.044236085 0.000001516 2.0044236129 0.000001472 1.044236115 0.000001486
0.7 2327505414 2327503431 0.000001984 2327503481  0.000001934 2.327503464 0.000001951
0.8 2.651081857 2.651079323 0.000002534 2.651079382  0.000002475 2.651079360 0.000002497
0.9 3.019206222 3.019203044 0.000003177 3.019203110  0.000003112 2.019203085 0.000003137
1.0 3436563656 3.436559728 0.000003928 3.436569804  0.000003853 3.436559772 0.000003885
TABLE 2 RESULTS OF PROBLEM 2
x Yexact Yqm Errormn Yarksa)  ETTOT(upkaay)  Yarkab)  ETTOT (4pgapy
0.0 1.000000000 1.000000000 0.000000000 1.000000000 0.000000000  1.000000000 0.000000000
0.1 1.226753448 1.226751953 0.000001495 1.226752264 0.000001184  1.226752263 0.000001185
0.2 1514780872 1.514774835 0.000006037 1.514775217 0.000005655 1.514775216 0.000005656
0.3 1.877648500 1.877635984 0.000012516 1.877636452 0.000012048 1.877636451 0.000012049
0.4 2331926160 2.331904590 0.000021570 2.331905164 0.000020996  2.331905163 0.000020997
0.5 2.897852285 12.897818267 0.000034018 2.897818980 0.000033305  2.897818979 0.000033306
0.6 3.600146154 3.600095232 0.000050922 3.600096109 0.000050045  3.600096108 0.000050046
0.7 4.468999959 4.468926316 0.000073643 4.468927391 0.000072568  4.468927390 0.000072569
0.8 5.541290530 5.541186602 0.000103928 5.541187912 0.000102618  5.541187911 0.000102619
0.9 6.862059330 6.861915315 0.000144015 6.861916953 0.000142377 6.861916952 0.000142378
1.0 8.486320124 8.486123367 0.000196757 8.48612537  0.000194754  8.48612536  0.000194764

Discussion of Results
In Tables 1 and 2, the results of the two fourth order methods, ARK4a (designated as
Vianxea,) and ARK4b (designated as  y 4pi4p)) e€xhibit less errors (designated as
Err0rs an.ey and Evrorggess) than the fourth order method of [7] (designated as y,;7 ) ) through
the domain of integration.

Conclusion
This research has succeeded in deriving two fourth order four stage Almost Runge-Kutta methods for the
solution of initial value problems of ordinary differential equations. The methods have proven to be not
just effective but also efficient as both of them produce lesser errors when compared to some existing
methods.

References
O. Abraham, “Development of some new classes of explicit Almost Runge-Kutta methods for non-stiff

differential equations,” unpublished Ph.D thesis,

Nigeria, 2010

Federal University of Technology Minna,

J. C. Butcher, “An introduction to Almost Runge-Kutta methods,” Applied Numerical Mathematics, vol.
24,pp.331-342,1997.

J. C. Butcher, Numerical methods for ordinary differential equations, 2nd ed., Great Britain: John Wiley
& Sons, Ltd., 2008.

N. Rattenbury, “Almost Runge-Kutta methods for stiff and non-stiff problems,” unpublished,Ph.D

thesis,

115

University of Auckland, New Zealand, 2005.




=) 4" International Conference of School of Science and Technology Education (SSTE), FUT, Minna October, 2016 =5

0.K.. Alimi, “On the performance of Richardson extrapolation technique in estimating local truncation
errors for explicit Almost Runge-Kutta methods,” unpublished, Master's thesis, Federal
University of Technology Minna, Nigeria, 2014.

A. Ndanusa and K. J. Audu, “Design and analysis of some third order explicit Almost Runge — Kutta
methods,” Applied Mathematics, vol. 7, pp. 13—-21,2016.

A. Ndanusa and K. J. Audu, “On fourth and fifth order explicit Almost Runge — Kutta methods,

International Journal of Scientific and Innovative Mathematical Research, vol. 4 no. 1, pp. 88 -
96,2016.

116




