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A Mathematical Model for Controlling the
Spread of Ebola Virus Disease in Nigeria
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Abstract—In this research work, we develop and analyse a
deterministic model for controlling the spread of Ebola Virus Disease
(EVD) in a population with vital dynamics (birth and death rates are
not equal), incorporating quarantining of infectious individuals which
is influenced by availability of isolation centres and surveillance
coverage We also considered improved personal hygiene of the
susceptible population influenced by public enlightenment campaign.
Numerical simulations showed that improved personal hygiene and
quarantining of infectious individuals are enough to control the
spread of EVD, with improved personal hygiene being the more
effective and efficient of the two control parameters
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I. INTRODUCTION

BOLA virus disease (EVD) (formerly known as Ebola
haemorrhagic fever), named after the river in Democratic
Republic of Congo (DRC, formerly Zaire) where it was
initially discovered in 1976, is avirulent filovirus that is known
to affect humans and primates. The virus is most commonly
spread via personal contact, and it has an incubation period of
two to twenty — one days. It takes approximately eight hours
for the virus to replicate, and can occur several times before
the onset of symptoms. "Hundreds to thousands of new virus
particles are then released during periods of hours to a few
days, before the cell dies." [1]. Symptoms that occur within a
few days after transmission include, high fever, headache,
muscle aches, stomach pain, fatigue, diarrhea sore throat,
hiccups, rash, red and itchy eyes, vomiting blood, bloody
diarrhea [2]. The death rate of Ebola is somewhere between
50% to 90%. Until now, there is no specific cure or vaccine
for Ebola but, efforts are on-going to find a viable treatment.
The first known occurrence of Ebola was in 1976 in almost
simultaneous outbreaks in the Democratic Republic of the
Congo (DRC) and Sudan, each escorted by fatality rate beyond
50%. The disease then disappeared after 1979 and did not re-
appear again until 1994 [3]. Ever since, outbreaks have been

occurring with increasing frequency.The most horrible
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outbreak of Ebola to date is currently occurring in West
Africa, and it's been a long affair that has infected well over
24000 and killed more than 10000 as at present. Countries
affected include primarily, Guinea, Liberia and Sierra Leone.
Related to this extensive outbreak Ebola has been imported
into Nigeria, Mali, Senegal, Spain, UK and the USA.

The present outbreak of EVD in West Africa happens to be
the most severe in recorded history; hence, the need to explore
the dynamics of the disease through mathematical modeling, in
order to control further outbreak of the disease in Nigeria. A
great many mathematicians have developed mathematical
models to better improve our understanding of the dynamics
and spread of EVD in order to curb its prevalence and stem the
incessant outbreaks of the virus[4] - [8].The research aims to
analyze the effectiveness of quarantine and improved personal
hygiene as control measures.

II. MODEL FORMULATION

The total population {N'} is divided into four (4) classes of
Susceptible{5), Latent{L}, Infectious{({} and Recovered{R}
individuals. The model parameters are define in Table 1.

TABLET
MODEL PARAMETERS
Parameter Description
w recruitment rate
H death removal rate
£ effective contact rate
with infectious individuals
Ty recovery rate of infected
individuals due to treatment
T recovery rate of infectious
individuals due to treatment
& death rate due to disease
¥ progression rate of infected
individuals to infectious individuals
q number of quarantined individuals
« surveillance coverage
v availability of isolation centres
& enhanced personal hygiene
due to public enlightenment
¢ rate of public enlightenment

The corresponding mathematical equations can be described
by a system of ordinary diftferential equations as follows:
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where,
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ky=( +8+u (6)
III. ANALYSIS OF MODEL
A. Disease—Free Equilibrium
At equilibrium, (1) — (4) are set to egual zero. That is,
dsS dlL I _ _
dt  dt dt dt 2
We define (5. L.1.R) = (8% L%.I%.R%) in (1) — (4).
Consequently,
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Substituting equation (11) into {8} — (10} respectively, we
obtain

(5°,1°,1% R%) = ( 0,0, a) (12)
Equation (12) is the Disease- FrccEqulhbnum (DFE).

B. Endemic Equilibrium

We define (5. L. 1, R} = (§*.L*.I"".R**) and set (1) — (4)
to equal zero respectively. Thus,

i k ko, N* o
T Ayl — qav)(l — cp) L3
S}J::{l-—qm){l — ) + uk K NT 145

Byk, (1 — gav)(1 — z¢)
Syafll — qmﬂil — o) + pk k. NT

15

Birk, (L — qav) (1 — c@) (437
P (Bym(1 — qavi(1 - £@) +uk kN ") (T ky + 73] -
ST Byk. k. {1- gavi{l—zg) {616
Therefore, at  endemic  equilibium, (S.L.1.A} =
{(S=.L", I, R™}, given by (13) — (16).

C. Effective Reproduction Number R of DFE

To derive the effective reproduction number, & of the DFE
we employ the next generation operator technique described
by [10], and which was subsequently analyzed by [11] thus:

R, =plK) {(i7)

where p{K denotes the spectral radius of the next generation
matrix £ . The matrix & is defined by

=Fy-t (18)
Thus,
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D. Local Stability

To establish that the DFE is locally stable, we show that our
effective reproduction number, R, < 1. Using the Jacobian
Matrix to linearize {1} — (4} we have
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The eigenvalues of (24) are found to be
A= —u (23)
Ay=—k, (26)
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Equations (25} — (28) implies,
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From (35), we conclude that A
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Hence, the DFE is
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E. Global Asymptotic Stability of DFE

By employing the Lyapunov principle the DFE is globally
asymptotically stable if 7 < 0 or P* = 0; where,

P=ylL+ ki (36)

P=yl'+ kI’ (37)

That is,
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Thus, P = 0 when R, = 1and P’ < 0when R, < 1, thus, by
Lyapunov principle, the DFE is globally asymptotically stable.

Therefore,

IV. NUMERICAL SIMULATION

For the purpose of model validation, in order to ensure that
the model is in agreement with reality, numerical simulation is
undertaken using the data provided in Table I, and varying
values of the control parameters, § and £. The results are
displayed in Fig. 1 — Fig. 8.

TABLE I
PARAMETER VALUES
__Symbol Value
T 9863 (day™*)
u 0.0000547% (day™)
8 09 (day™™)
E 0.045 (day™ %)
o 0.15 (day™)
5 0.025 (£ay™%)
y 0.083 (day™™)
6 875
3 0.65
@ 050

Population (million)
(million)

Fig.1 Latent, Infectious and Recovered classes wheng = 0,& = 0
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Fig. 3 Latent, Infectious and Recovered classes wheng = 1,8 = 1
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Fig. 5Susceptible class at varying control parameters
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V. DISCUSSION OF RESULTS

Fig. 1 reveals the rate at which the population becomes
latently infected is fast increasing when there is no control
parameter in place. In Fig. 2, the susceptible population
reduces at a very high rate when no control parameters are in
place. Fig. 3 shows the latent, infectious and recovered classes
when both control parameters are implemented at full scale
(i.e. 100%). The rate of infection can be seen to have dropped
drastically. In Fig. 4 the effectiveness of improved personal
hygiene over quarantine is clearly exhibited. Fig. 5 exhibits a
gradual drop in the rate at which susceptible individuals
becomes infected. When quarantine and improved personal
hygiene are implemented at full scale (i.e. 100%) in Fig. 6, the
disease is put under control and dies out soon. In Fig. 7 the
growth of the susceptible population is uniform when the
proportion of quarantined infectious individuals and the
proportion of susceptible population that improved their
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personal hygiene are both 100%. Fig. 8 reveals a steady drop
in the effective reproduction number of the disease which
proves the effectiveness of the control parameters in place.

VI. CONCLUSION

Given the results obtained from the analysis of the model,
we observed that a timely implementation of the control
parameters would go a long way in stemming the spread of the
disease in a population that has been ravaged by EVD. While
this is a good thing, we must emphasize the fact that a timely
identification of an outbreak remains of paramount importance
in controlling the spread of the disease.
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