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Background: Disease Mapping

Disease Mapping
Ecological studies of crime are of great interest to geographers and
criminologists and they are used to reveal the geographic pattern of
crime risks as well as the relevant risk factors explaining that pattern.
Crimes are rarely considered a public health problem or investigated
using epidemiological methods.
Broadly speaking, the ecological or neighborhood determinants of
health and crime are themselves one in the same, or at least
correlated[2, 3]
Disease mapping:

to describe geographical variation of disease
to generate hypothesis about the possible causes of differences in risk
of disease

Related Databases
National Bureau of Statistics (NBS)
Nigeria Demographics and Health Survey (DHS)
Surveillance, Epidemiology, and End Results (SEER)
Mapping Malaria Risk in Africa (MARA/ARMA collaboration),
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Background: Disease Mapping

Background: single crime mapping

Mapping of raw armed robbery incidence 2017 across 36 states and
FCT - Abuja in Nigeria
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Background: Disease Mapping

Background: modeling of a single crime

For rare case, Poisson regression model:

Yi|µi ∼ Poisson(Ei exp(µi)) i = 1, . . . , n,

where µi = x′iβ + φi. The xi are explanatory, state(district)-level spatial
covariates, having parameter coefficients β.

E(Yi) = Ei exp(µi) −→ SMR = exp(µ̂i), where µ̂i = x′iβ̂ + φ̂i.

µi represents the log relative risk of departures of the Yi from the Ei.
Hierarchical Bayesian modeling:

Using Markov chain Monte Carlos (McMC) methods
Fist stage: likelihood of the observation data
Second stage : prior distribution of the fixed effect and the random
effect φ = (φ1, φ2, . . . , φn)′.
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Background: Disease Mapping

Background: modeling of a single crime cont.. . .

Markov random field (MRF): the conditional distribution of a state’s
response given the responses of all the other states depends only on
the observations in the neighborhood of this site.
Prob(A site’s response | All other sites)=Prob(A site’s response | its
neighbors
Mathematically, the Conditionally autoregressive (CAR) prior on
φ = (φ1, φ2, . . . , φn)′ is given as

φi|φj , i 6= j,∼ N

 α

mi

∑
j∼i

φi,
1
τmi

 , i, j = 1, . . . , n,

where mi is the number of neighbours of area i and α is smoothing
parameter
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Background: Disease Mapping

Background: modeling of a single crime cont.. . .

The following from the equation above, it implies that

←→ φ ∼ Nn

(
0, [τ(D − αW )]−1

)
where D = Diag(mi), and W is adjacency matrix of the map
i.e. wii = 0 and wii′ = 1 if i′ is adjacent to i and 0 otherwise.
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Background: Disease Mapping

Motivation: mapping of multiple crimes

Mapping of reported armed robbery and theft (stealing) incidence
2017 across 36 states and FCT - Abuja in Nigeria
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Background: Disease Mapping

Motivation: spatial modeling of multiple crimes

For rare cases, poisson regression model:

Yij ∼ Poisson(E · ex
′
ijβj+φij) i = 1, . . . , n, j = 1, . . . , p (1)

where the xij are explanatory, region(state)-level spatial covariates for
crime j having parameter coefficient βj .
Correlations in multiple crime data:

Spatial correlation for each disease across regions
Dependence among multiple crimes within the same region
Cross-spatial correlation among multiple crime rates in different regions
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The Statistical Models

Multivariate modeling cont.. . .

In multivariate setting, where φ = (φ1, φ2)′ is modeled using a
multivariate conditional autoregressive prior
that is Φ ∼ MCAR(1,Σ), and where Σ is the covariance matrix
including correlation.
where βj0, j = 1, 2 in equation (1) represents individual specific crime
intercept,
given φi and φi = (φ1, φ2)′ is a 2× 1 vector of spatial dependent
random effects for the ith region (state)
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The Statistical Models

Model Specifications
Univariate Prior Specification (CAR)

Consider a vector φ = (φ1, φ2, . . . , φn)′ of p components, which follow a
multivariate Gaussian distribution with mean zero and variance -covariance
matrix Q−1,
the joint pdf of φ is given by

p(φ) = (2π)
p
2 |Q| 12 exp

{
1
2φ

TQφ

}
where Q is p× p symmetric and positive definite matrix.

Multivariate Prior Specification (MCAR)
The development of MCAR model is credited to Mardia1(988) as an
extension of Besag (1974)
Then Φ is an np× 1 vector having a multivariate Gaussian distribution with
mean, 0 and precision matrix Q, mathematically expressed as

p(Φ) = (2π)
np
2 |Q| 12 exp

{
−1

2ΦT QΦ
}

(2)
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The Statistical Models

Statistical inference

In a full Bayesian framework, appropriate prior distributions are
assigned to all model parameters .
non-information priors were assigned to the regression coefficients.
For the each intercept, diffuse priors were assumed, that is, p(αk)
For the regression coefficients, highly dispersed normal distribution
priors are assumed, that is, p(β) ∼ N(0, 104).
an inverse Wishart prior is assumed for Σ ∼ IW (r,R) with R
considered to be an identity matrix.
All model were fitted using WinBUGS software
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The Statistical Models

Posterior Estimates of risk factors of crimes
Table 1: Posterior Estimates of risk factors of covariates and model fit parameters

Parameters Theft Armed robbery

Fixed effects Post. mean (95% CI ) Post. mean (95% CI )
β0 -0.346 ( -0.597 , -0.116 ) 0.134 ( -0.205 0.453 )
β1 -0.352 ( -0.753 , 0.034 ) -0.114 ( -0.689 0.580 )
β2 -0.311 ( -0.636 , -0.028 ) 0.095 ( -0.384 0.515 )
β3 0.334 ( -0.131 , 0.859 ) -0.596 ( -1.377 0.254 )
β4 -0.292 ( -0.726 , 0.043 ) -0.173 ( -0.803 0.338 )
β5 0.191 ( -0.210 , 0.538 ) 0.227 ( -0.236 0.898 )
β6 0.122 ( -0.399 , 0.596 ) 0.101 ( -0.529 0.646 )
Random effects
σ2

u 0.395 (0.089 , 0.990 ) 0.679 ( 0.099 1.950)
σ2

v 0.829 (0.601 , 1.120) 1.060 (0.686 1.459)
ρ12 0.4654 ( −0.224, 0.8785)
Model fit
D̄ 323 256.2
pD -3119 -645.4
DIC -2796 -389.2

β0= overall base risk (intercept), β1= number of divisional police HQ,
β2= unemployment rate, β3= population density, β4= education Index
β5= gross national income (GNI)β6=proportion young adult male per state (age 18-35)
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The Statistical Models

Spatial correlation and conditional variances

The marginal conditional variances in the geographical prevalence of
the crime rates are : armed robbery : σ2

u: 0.395
95%CI(0.089, 0.990) and stealing 0.679 95%CI( 0.099 1.950).
There is weak positive correlation between the spatial incidence of
robbery and stealing : 0.4654 ( −0.224, 0.8785).
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The Statistical Models

Predicted maps of multiple crimes

Figure 1: Predicted Risk Surface of crime rates (a) armed robbery (b) theft using
convulsion model
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The Statistical Models

Concluding remarks

The present study expands the methodological strategy by linking the
existing criminology literature and spatial modeling approach in a
unified manner.
In contrast to the conventional regression model, the Bayesian spatial
model has taken into account neighbourhood effect of crime rates
Our approach also detected hot spot regions and evaluated the share
risk factors of the crime rates.
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Ongoing research

On Going Research on Multivariate lattice

Dynamic MCAR models for multivariate
spatiotemporal data
Spatially varying coefficients model
Spatial factor analysis with p factors
Linear model of coregionalization (LMC)
Some other applications of multivariate lattice models
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Ongoing research

Research Output & Future Direction

Adeyemi et al(2016) Semi-parametric Mutinomial Ordinal Models to
analyze the spatial patterns of child birthweight in Nigeria published
Int. J. Environ. Res. Public Health 2016, 13, 1145;
doi:10.3390/ijerph13111145
Adeyemi et al(2016) Bayesian Mutinomial Ordinal Models to analyze
the risk factors and spatial patterns of childhood anemia in Tanzania
published Proceeding of 58th Annual Conference of South African
Statistical Association
Adeyemi et al(2019) Multivariate Spatial Joint Mapping of the risk of
Childhood Anemia and Malnutrition in sub-Saharan Africa: A
cross-sectional study of small-scale geographical disparities African
Health Sciences
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