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Abstract 
In this paper, we developed an implicit continuous four-step Extended Block Hybrid 
Backward Differentiation Formulae (EBHBDF) for the direct solution of Fuzzy Differential 
Equations (FDEs). For this purpose, the Legendre polynomial was employed as the basis 
function for the development of schemes in a collocation and interpolation techniques. in 
this regard and the results are satisfied the convex triangular fuzzy number. We also 
compare the numerical results with the exact solution, and it shows that the proposed 
method is good approximation for the analytic solution of the given second order Fuzzy 
Differential Equations 
 
Introduction 
The study of Fuzzy Differential e\Equations (FDEs) appears as a natural way to model the 
propagation of uncertainty in a dynamical environment. FDEs play an important role for 
modeling physical and engineering problems since they mimic the real situation to handle 
the system under uncertainty. Though, it is difficult to obtain the exact solution of FDEs due 
to the complexity of arithmetic in Fuzzy. The concept of Fuzzy set theory was first developed 
by Zadeh (1965) and there is need for efficient numerical technique to handle the 
corresponding FDEs. In recent years, the theory of FDEs has attracted wide spread attention 
and had been rapidly growing. It was massively studied by several researchers (Oregan, 
Lakshmikantham, & Nieto, 2003; Nieto, 2006). Chang and Zadeh (1972) first introduced the 
concept of Fuzzy derivative, followed by Duois and Prade (1982) who defined and used 
extension principle in their approach. Bede (2008) described the exact solutions of FDEs. 
Buckley and Feuring (2001) used two analytical methods to solve nth order linear differential 
equations with Fuzzy initial conditions, the first method Fuzzified the crisp solution to obtain 
a Fuzzy function and then check if it satisfied the differential equations and the second is the 
reverse of the first method. Ahmada, Hasan, and Baets (2013) studied the analytical and 
numerical based solution for Fuzzy differential equations FDEs. Oregan et al. (2003) 
obtained the exact solution of Fuzzy first-order boundary value problems. In all of the above 
attempts, the FDEs are converted into coupled or uncoupled system of differential equations 
depending on the sign of the coefficients. Much recently, Tapaswini and Chakraverty (2014) 
developed a new analytical method based on Fuzzy centre which solve with respects to the 
sign of the coefficients. 
 
In the last few years, second-order fuzzy differential equations have been studied by 
Abbasbandy and Viranloo (2002), Abbasbandy, Viranloo, L´opez-Pouso, and Nieto (2004), 
Allahviranlo, Ahmady, and Ahmady (2007), Allahviranlo, Ahmady, and Ahmady (2008), 
Wang and Guo (2011) and Rabiei, Ismail, Ahmadian and Salahshour (2013), Fookand and 
Ibrahim (2017). In the work of Allahviranlo et al. (2008), the authors obtained the 
approximate solution of nth-order linear differential equations with fuzzy initial conditions by 
using the collocation method. Wang and Guo (2011) have developed numerical methods for 
addressing second-order fuzzy differential equation by Adomian decomposition methods. 
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Rabiei et al (2013) have developed the fuzzy improved Runge-Kutta Nystrom (FIRKN) 
method for solving second-order fuzzy differential equations. Meanwhile Fookand and 
Ibrahim (2017) proposed block backward differentiation formula method for solving second 
order fuzzy initial value problems. Jameel et al (2017) developed numerical solution of 
second-order nonlinear two-point fuzzy boundary value problems (TPFBVP) by combining 
the finite difference method with Newton’s method. In this paper, we construct an Extended 
Block Hybrid Backward Differentiation Formula (EBHBDF) method capable of solving both 
Initial and boundary value problem of linear and non-linear type of second order FDEs with 
small errors and less computation. 
 
Preliminaries 
The definitions reviewed in this section are required in our work. 
Definition 2.1 Bodjanova (2006) 
The link between the crisp and fuzzy domains represented by the r-level set (or r-cut set) of 

a fuzzy set A , denoted by [ ]rA  which is the crisp set of all x X   such that 
A

r   i.e., 

 [ ] | , [0.1]
A

A x X r r     

Definition 2.2 
One of the important tools that uses to fuzzify the crisp models are fuzzy numbers which are 
subsets of the real numbers set and represents vague values. Fuzzy numbers are linked to 
degrees of membership which state how true it is to say if something belongs or not to a 
determined set. A fuzzy number   is called a triangular fuzzy number (Dubois and Prade, 

1982) is defined by three numbers      where the graph of  x  is a triangle with 

the base on the interval ,   and its membership function has the following form (Figure 

1) 
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Figure 1: Triangular fuzzy number 
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In this paper, the class of all fuzzy subsets of R will be denoted by E  and satisfy the 
following properties (Dubois and Prade, 1982, Mansouri and Ahmady, 2012) 

1.  x  is normal, i.e., Rt  0 with  0 1,t   

2.  x is convex fuzzy set, i.e.,          1 min , , , 0,1x y x y x y         

, 
3.  upper semi-continuous on R  

4.   0:  xRx    is compact. 

Where E  is the space of fuzzy numbers and R  is a proper subset of E . 

Define the r-level set     , \ ,0 r 1,
r

x x x r       where     
0

\ 0x x     is 

compact Ghanbari (2009) which is a closed bounded interval and denoted by 

      , .
r

x x   In the parametric form (Dubois and Prade, 1982) which is represented 

by an ordered pair of function       ; , ; , 0,1x r x r r    that satisfies the following 

conditions: 

1.  ;x r is bounded left continuous non-decreasing function over [0,1]. 

2.  ;x r is bounded   left continuous non-increasing function over 0,1 . 

3.    ; ; .x r x r   A crisp number r is simply represented by     r .r r    

 

Definition 2.3 Fard (2009) A mapping : Tf E   for some intervalT E  is called 

a fuzzy process or fuzzy function with crisp variable, and we denote r-level set by: 

       ; ; , ; , , 0,1
r

f x r f x r f x r x T r         

where E be the set of all upper semicontinuous normal convex fuzzy numbers. 
 
Definition 2.4  Zadeh(2005) Each function :f X Y  induces another function 

   :f F X F Y   defined for each fuzzy interval U in X by: 

    
 1 , ( )

0, ( )

x f y
Sup U x if y range f

f U y
if y f




 


 

This is called the Zadeh’s extension principle. 
 
Definition 2.5 Sriram and Murugadas (2010) A fuzzy matrix of order m s   is 

defined ,ij aijA a         as, where 
aij   is the membership function of the element 

, 1,2,... 1,2,..., .ij ija in A a E for i mand j s        Thus for all  0,1r  

, , , .ij ij ijr r rr
A A A and a a a               

 
Derivation of the Method 
In this section, we construct the main method and additional methods derived from its 
second derivative which are combined to form the four-step Extended Block Backward 

Differentiation Formula (EBBDF) on the interval from nx  to nx kh  where h be the chosen 

step-length.  We assume that the exact solution  xy on the interval  knn xx ,  is locally 

represented by  xY  given by 
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   xbxY j

qp

j

j





1

0

          (1) 

jb are unknown coefficients to be determined, and  xj  are Legendre polynomial basis 

function of degree 1p q   such that the number of interpolation points and the number of 

distinct collocation points q  are respectively chosen to satisfy 0p  and 0q  . The 

proposed class of methods is thus constructed by specifying the following parameters: 

  4,2,5,,...0,1   kqpkjxx j

nj  

By imposing the following conditions 

4,...0,
6

0

 



 iyxb in

j

in

j

j          (2)

  4,...0,1 2
6

0

 







 ifxbjj in

j

in

j

j         (3) 

Assuming that  ihxYy nin  , denote the numerical approximation to the exact solution

   
jnninin yihxYfxy   ,,, , denote the approximation to  inxy 

  and n is the grid 

index. It should be noted that equation (2) and (3) lead to a system of seven equations 

which must be solved to obtain the coefficients , 0,1..., 6.jb j  The main method is then 

obtained by substituting the values of 
jb  into equation (2). After some algebraic 

computation, the method yields the expression in the form (4). 

         

















44

4

15

4

15

2

4

15

4

15

4

0

fxfxhyxxxY
j

j       (4) 

Where        xxxjxj 4

4

15

4

15 ,,....,2,1,0   are continuous coefficients. The continuous 

form in (4) are evaluated at 4 nxx to obtain the main method as 

4 1 2 3 15

2

2 2

15 4

2

2797 11432 41430 1268216 314654720

2952747 1202971 765527 2952747 227361519

37376 1692

328083 109361

n n n n n
n

n
n

y y y y y y

h f h f

   





     



 

(5) 

Differentiating (4) twice to obtain the additional method at 321 ,,   nnn xxxxxx  as 

3 2 1 15

4

2

15 4 1

4

19697337 2908143 14399488 4904669

32100299 32100299 32100299 32100299

1
9559872 5026329 6889743

32100299

n n n n
n

n n
n

y y y y y

h f f f

  


 


    

 
  

    (6)

 

2 15 3 1

4

2

15 4 2

4

184320 96881 1445682 77154

2521662 2521662 2521662 2521662

1
305536 173327 1202971

2521662

n n n n
n

n n
n

y y y y y

h f f f

  


 


    

 
   
    (7)
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1 15 3 1

4

2

15 4 3

4

44619776 96881 41892741 409871

4828761 4828761 4828761 4828761

1
1315776 1735965 25262391

4828761

n n n n
n

n n
n

y y y y y

h f f f

  


 


    

 
  

   (8) 

The first derivative formula is also obtained by differentiating the continuous form in 

equation (4) once as follows 
2 2

4 15

4

1 2 3

15

4

420477750 802771200 647551751

1
1745131500 2733179625 2879530500

252623910
1243930624

n n
n

n n n n

n

h f h f y

z y y y
h

y




  



   
 
 

     
 
 
  (9)

 

1 15 3

4

2 1

15 4

4

6820845570 7219392512 17750608645

21483497970 9967046355 985235482

4151790720 2105548830

n n
n

n n n

n
n

hz y y

y y y

h f f

 


 




 

   

 
  
 

 

2 2

4 15

4

3 1 2 3

15

4

23222430 56327040 1650726

1
17439975 114633090 125047615

252623910
223891456

n n
n

n n n n

n

h f h f y

z y y y
h

y




   



   
 
 

    
 
 
 

 

2 2

4 15

4

2 1 2 3

15

4

130540410 273208320 21997129

1
305930520 874173465 1752289000

974406510
594182144

n n
n

n n n n

n

h f h f y

z y y y
h

y




   



   
 
 

     
 
 
 

 

2 2

4 15

4

4 1 2 3

15

4

88503030 3476309760 24233363

1
305930520 1411179165 11611207300

6820845570
10420477952

n n
n

n n n n

n

h f h f y

z y y y
h

y




   



   
 
 

    
 
 
 

2 2

4 15

4

7 1 2 3

2

15

4

1132420905 2361355920 70213297

1
719018370 4301529705 44129411480

27283382280
40476686848

n n
n

n n n
n

n

h f h f y

z y y y
h

y




  




   
 
 

     
 
 
 

 
Numerical Examples and Discussion of Results 
In this section, the efficiency and accuracy of the EBHBDF method formulated in above is 
tested on fuzzy system. The self-starting method is implemented efficiently by combining 
the methods as simultaneous numerical integrator for IVP’s for example, the method 

presented in (5) - (9) are combined to obtain the initial conditions at   04mod,4  nxn  
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and0 n N   using computed values  4nxy  over sub-interval  40 , xx  

In this section, we solved the fuzzy differential equations to show the accuracy of the 
method proposed in the above. The results of the exact solutions and numerical solutions 
are presented in the tables and figures. A comparison of the numerical solutions and exact 

solution is carried out to obtain the errors. Let the exact solution 
     , , , ,Y t r Y t r Y t r

, 
the absolute error formula, considered in tables 1 – 2 is as follows: 
The error,  is defined as the maximum error through the whole interval of integration. 
Maximum Error  

,y Y y Y   
 

The notation used in the tables and figures are the following: 

inter

:

: va

:

:

:

:

level l

Y lower bounded exact solution

Y upp

h st

er bounded exact solution

y lower bounded numerical solut

ep size

r fuzzy numbers with

ion

y upper bounded numer

fuzz bound

ical sol

ed

n

r

utio



 
 
Problem1: We consider the following fuzzy linear initial value problem. 

𝑦" = −𝑦,     𝑥 ≥ 0 
𝑦(0) = 0, 𝑦′(0) = [0.9 + 0.1𝑟, 1.1 − 0.1𝑟] 

  Exact solution at 𝑥 = 1 
𝑌(𝑥, 𝑟) = [(0.9 + 0.1𝑟) sin(𝑥),   (1.1 − 0.1𝑟) sin 𝑥] 

 
Problem 2: We consider the following fuzzy linear initial value problem 

𝑦" = −𝑦 + 𝑥, 𝑥 ≥ 0 
𝑦′(0) = [1.8 + 0.2𝑟, 2.2 − 0.2𝑟] 

   Exact solution at 𝑥 = 1 

𝑦1 = (
4

5
+

1

5
𝑟) sin 𝑥 + (

9

10
+

1

10
𝑟) cos(𝑥) + 𝑥 

𝑦2 = (
6

5
−

1

5
𝑟 sin(𝑥)) + (

11

10
−

1

10
𝑟) cos 𝑥 + 𝑥 

 
Problem 3:  We consider a second-order Fuzzy linear differential equation with positive 
coefficients, subject to Fuzzy boundary conditions. 

0''  tyy  

]1.01.0,1.01.0[)1()0( rryy   Exact solutions: First condition; 

)sin()0546302.013376.1()cos()1.01.0(],[ trtrtrtY   

Second condition; )sin()0546302.024303.1()cos()1.01.0(],[
~

trtrtrtY   
 
Problem 4  

 
  
 

     

   rrry

rrryx
rxy

rxy
rxy

1.01.2,1.09.1,1

1.01.1,1.09.0,0,1,0,
,

,
,

2








 

Using the Maple 2015 software package to obtained the exact solution of Problem 4 as 
follows 
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 
 

x
r

r
rrxY 2

0.10.14

0.10.91.0
1.04.1;

2





  

 
 

x
r

r
rrxY 2

0.10.16

0.10.111.0
1.06.1;

2





  

Also we can represent the exact solution of Problem 4 for all  1,0r  and  1,0x   in figure 

4 
 

Table 1: Error at t = 1 in solving problem 1 
 BDF BBDF EBHBDF 

h  r              

110
 0 3.09591e-05 3.78389e-05 5.40487e-05 6.60595e-05 2.80947e-07 3.4337e-07 

0.2 3.16471e-05 3.71510e-05 5.52498e-05 6.48584e-05 2.8719e-07 3.3713e-07 
0.4 3.23351e-05 3.64630e-05 5.64509e-05 6.36573e-05 2.93433e-07 3.3089e-07 
0.6 3.30231e-05 3.57750e-05 5.76519e-05 6.24563e-05 2.99676e-07 3.2464e-07 
0.8 3.37111e-05 3.50870e-05 5.88530e-05 6.12552e-05 3.0592e-07 3.1840e-07 
1.0 3.43990e-05 3.43990e-05 6.00541e-05 6.00541e-05 3.12163e-07 3.1216e-07 

Execution 
Time 

 1.26s 0.6s 0.52s 

 
 BDF BBDF EBHBDF 

h  r              
210

 0 3.14945e-08 3.84933e-08 6.851e-08 8.373e-08 6.12e-11 7.06e-11 

0.2 3.21944e-08 3.77934e-08 7.003e-08 8.221e-08 6.02e-11 7.14e-11 
0.4 3.28943e-08 3.70935e-08 7.155e-08 8.069e-08 6.25e-11 6.97e-11 
0.6 3.35941e-08 3.63937e-08 7.307e-08 7.916e-08 6.36e-11 6.79e-11 
0.8 3.42940e-08 3.56938e-08 7.459e-08 7.764e-08 6.45e-11 6.54e-11 
1.0 3.49939e-08 3.49939e-08 7.612e-08 7.611e-08 6.48e-11 6.48e-11 

 
Table 2: Error at t = 1 in solving problem 2 
 BDF BBDF EBHBDF 

h  r              

110
 0 1.708944e-05 2.85313e-05 2.25608e-05 4.09196e-05 1.09762e-07 2.0352e-07 

0.2 1.823363e-05 2.73871e-05 2.43967e-05 3.90838e-05 1.19138e-07 1.9414e-07 
0.4 1.937782e-05 2.62430e-05 2.62326e-05 3.72479e-05 1.28514e-07 1.8477e-07 
0.6 2.052201e-05 2.50988e-05 2.80684e-05 3.54120e-05 1.3789e-07 1.7539e-07 
0.8 2.166619e-05 2.39546e-05 2.99043e-05 3.35761e-05 1.47266e-07 1.6601e-07 
1.0 2.281038e-05 2.28104e-05 3.17402e-05 3.17402e-05 1.56643e-07 1.5664e-07 

Execution 
Time 

 1.26s 0.6s 0.57s 

 
  

 BDF BBDF EBHBDF 

h  r              
210

 0 1.67951e-08 2.83038e-08 3.56459e-08 6.04823e-08 2.93e-10 3.51e-10 
0.2 1.79460e-08 2.71529e-08 3.81297e-08 5.79987e-08 2.95e-10 3.42e-10 
0.4 1.90969e-08 2.60021e-08 4.06131e-08 5.55149e-08 3.04e-10 3.42e-10 
0.6 2.02477e-08 2.48512e-08 4.30966e-08 5.30309e-08 3.08e-10 3.33e-10 
0.8 2.13986e-08 2.37003e-08 4.55803e-08 5.05478e-08 3.18e-10 3.23e-10 
1.0 2.25495e-08 2.25495e-08 4.80643e-08 4.80643e-08 3.26e-10 3.26e-10 
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Table 3:  Solution of Problem 3  at x=1/12 

r Y  y  Y  y  

0 -0.08861562589 -0.08861521274 0.1106903314 01197852491 

0.1 -0.07819560308 -0.07819518960 0.1002703086 0.1093652261 

0.2 -0.06777558028 -0.06777516657 0.08985028585 0.09894520301 

0.3 -0.05735555747 -0.05735514341 0.07943026304 0.08852517997 

0.4 -0.04693553467 -0.04693512029 0.04817019462 0.07810515682 

0.5 -0.03651551186 -0.03651509720 0.03775017182 0.06768513374 

0.6 -0.02609548906 -0.02609507415 0.02733014901 0.05726511070 

0.7 -0.01567546625 -0.01567505104 0.01691012621 0.04684508756 

0.8 -0.00525544345 -0.005255027944 0.00649010340 0.03642506446 

0.9 0.005164579351 0.005164995189 0.008146109966 0.02600504135 

1 0.015584602156 0.01558501824 0.018641544080 0.018641543730 

 

Table 4: Difference approximate solution  ,y x r   at h=1/20 for Problem 4 

R  0,y r   0.2,y r   0.4,y r   0.6,y r   0.8,y r   1.0,y r  

0 0.900000000 1.170466311 1.389241611 1.577971655 1.746424118 1.90000000 

0.25 0.925000000 1.193992139 1.412663429 1.601755296 1.770768885 1.92500000 

0.5 0.950000000 1.217576679 1.436138431 1.625575424 1.795131656 1.95000000 

0.75 0.9750000000 1.241216591 1.459664055 1.649430460 1.819511708 1.97500000 

1 1.0000000000 1.264908775 1.483237895 1.673318913 1.843908357 2.00000000 

 

Table 5: Difference approximate solution  rxy ,    at h=1/20 for Problem 4 

r  0,y r   0.2,y r   0.4,y r   0.6,y r   0.8,y r   1.0,y r  

0 1.0900000000 1.359189815 1.577021613 1.768218943 1.940669873 2.09900000 

0.25 1.0750000000 1.336271154 1.554226771 1.745171056 1.917191552 2.07500000 

0.5 1.0500000000 1.312438641 1.530521316 1.721190509 1.892748880 2.05000000 

0.75 1.0250000000 1.288650350 1.506857690 1.697239374 1.868320953 2.02500000 

1 1.0000000000 1.264908775 1.483237895 1.673318913 1.843908357 2.00000000 

 
Table 6: Accuracy of Numerical solution of Problem 4 at h = 1/120 and r = 0.75 
x 

75.020

1





E  

75.020

1 







E  

0 0 0 

0.2 2.57E-06 2.05E-06 
0.4 2E-06 1.63E-06 

0.6 1.26E-06 1.03E-06 

0.8 5.88E-07 4.87E-07 
1 0 0 
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Figure 2: The exact solution and the approximate solution in Table 1 with h=0.1   
 

 
Figure 3: The exact solution and the approximate solution in Table 2 with h=0.1   
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Figure 4: Exact analytical solution of problem 4 for all  1,0r  and  1,0x  

 

 
Figure 5: Exact and Numerical solutions at x=0.8 and for all r in Problem 4 when  
      h = 1/120 
 
For problems 1 and 2, the errors of EBHBD are compared with BDF and BBDF proposed by 
Fookand et al (2017) which are given in Tables 1 and 2, also, the time taken for the 
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proposed method are presented in the Tables. It is observed that the absolute error of the 
proposed is very small when compared to Foolkand et al (2017) at different step size. 
However, for time taken to calculate the results, the proposed method in this paper has 
significant advantages which have more efficient than existing method. Figures 2 and 3 
show the approximate solutions of EBHBDF and exact solution. Table 3 show the exact and 
numerical solutions with the first and second boundary conditions. It can be observed that 
the behavior of the proposed methods is in agreement with the exact solution. From Tables 
4 and 5, one can see that the numerical results satisfy the convex triangular fuzzy number 
as mentioned in Sect. 2. Also for more illustration of the proposed method in fuzzy 

environment of problem 4, we solved this problem at 75.0r  with step size 
20

1
h  for 

nixi ,2,1,0,10   as shown in Table 6 

 
Conclusion 
In this study, we have presented extended block hybrid backward differentiation formula for 
the solution of fuzzy differential equations using collocation and interpolation techniques. 
The method proposed performs better than existing method found in the literature. The 
method avoids complicated subroutines needed for existing methods requiring starting 
values or predictors. We have demonstrated the accuracy of the methods for fuzzy 
differential problems. It is recommended that future research be focused on the 
implementation of the method to parabolic partial differential equations. 
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