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Abstract

In this paper, we developed an implicit continuous four-step Extended Block Hybrid
Backward Differentiation Formulae (EBHBDF) for the direct solution of Fuzzy Differential
Equations (FDES). For this purpose, the Legendre polynomial was employed as the basis
function for the development of schemes in a collocation and interpolation technigues. in
this regard and the results are satisfied the convex triangular fuzzy number. We also
compare the numerical results with the exact solution, and it shows that the proposed
method is good approximation for the analytic solution of the given second order Fuzzy
Differential Equations

Introduction

The study of Fuzzy Differential e\Equations (FDEs) appears as a natural way to model the
propagation of uncertainty in a dynamical environment. FDEs play an important role for
modeling physical and engineering problems since they mimic the real situation to handle
the system under uncertainty. Though, it is difficult to obtain the exact solution of FDEs due
to the complexity of arithmetic in Fuzzy. The concept of Fuzzy set theory was first developed
by Zadeh (1965) and there is need for efficient numerical technique to handle the
corresponding FDEs. In recent years, the theory of FDEs has attracted wide spread attention
and had been rapidly growing. It was massively studied by several researchers (Oregan,
Lakshmikantham, & Nieto, 2003; Nieto, 2006). Chang and Zadeh (1972) first introduced the
concept of Fuzzy derivative, followed by Duois and Prade (1982) who defined and used
extension principle in their approach. Bede (2008) described the exact solutions of FDEs.
Buckley and Feuring (2001) used two analytical methods to solve nth order linear differential
equations with Fuzzy initial conditions, the first method Fuzzified the crisp solution to obtain
a Fuzzy function and then check if it satisfied the differential equations and the second is the
reverse of the first method. Ahmada, Hasan, and Baets (2013) studied the analytical and
numerical based solution for Fuzzy differential equations FDEs. Oregan et al (2003)
obtained the exact solution of Fuzzy first-order boundary value problems. In all of the above
attempts, the FDEs are converted into coupled or uncoupled system of differential equations
depending on the sign of the coefficients. Much recently, Tapaswini and Chakraverty (2014)
developed a new analytical method based on Fuzzy centre which solve with respects to the
sign of the coefficients.

In the last few years, second-order fuzzy differential equations have been studied by
Abbasbandy and Viranloo (2002), Abbasbandy, Viranloo, L opez-Pouso, and Nieto (2004),
Allahviranlo, Ahmady, and Ahmady (2007), Allahviranlo, Ahmady, and Ahmady (2008),
Wang and Guo (2011) and Rabiei, Ismail, Ahmadian and Salahshour (2013), Fookand and
Ibrahim (2017). In the work of Allahviranlo et al (2008), the authors obtained the
approximate solution of nth-order linear differential equations with fuzzy initial conditions by
using the collocation method. Wang and Guo (2011) have developed numerical methods for
addressing second-order fuzzy differential equation by Adomian decomposition methods.
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Rabiei et a/ (2013) have developed the fuzzy improved Runge-Kutta Nystrom (FIRKN)
method for solving second-order fuzzy differential equations. Meanwhile Fookand and
Ibrahim (2017) proposed block backward differentiation formula method for solving second
order fuzzy initial value problems. Jameel et a/ (2017) developed numerical solution of
second-order nonlinear two-point fuzzy boundary value problems (TPFBVP) by combining
the finite difference method with Newton’s method. In this paper, we construct an Extended
Block Hybrid Backward Differentiation Formula (EBHBDF) method capable of solving both
Initial and boundary value problem of linear and non-linear type of second order FDEs with
small errors and less computation.

Preliminaries

The definitions reviewed in this section are required in our work.

Definition 2.1 Bodjanova (2006)

The link between the crisp and fuzzy domains represented by the r-level set (or r-cut set) of

a fuzzy set A, denoted by [A], which is the crisp set of allxe X such that u; >r i.e.,
[Al={xeX|u; >r,re[0.1]}

Definition 2.2

One of the important tools that uses to fuzzify the crisp models are fuzzy numbers which are
subsets of the real numbers set and represents vague values. Fuzzy numbers are linked to
degrees of membership which state how true it is to say if something belongs or not to a
determined set. A fuzzy number y is called a triangular fuzzy number (Dubois and Prade,

1982) is defined by three numbers « < <y where the graph of x(x) is a triangle with
the base on the interval[a, ,B] and its membership function has the following form (Figure
1)

0 if Xx<a
XZ%  ifg<x<p
p—a
u(xa By)= . x
, if B<x<
Py ifg<x<y
0, if x>y
and its r-level is: [,u(x)]r :[a+r(,8—a),y—r(y—,8)],r €[0,1].
ulx) 1
1
n X
a ﬁ V4

Figure 1: Triangular fuzzy number
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In this paper, the class of all fuzzy subsets of Rwill be denoted by E and satisfy the
following properties (Dubois and Prade, 1982, Mansouri and Ahmady, 2012)

1. p#(x) is normal, i.e., 3t; € Rwith x(t)) =1,
2. u(x)is convex fuzzy set, i.e., u(Ax+(1-2)y)=min{u(x),u(y)}vx yel, 1[0,1]
E’). L upper semi-continuous on R

4, {xeR: u(x)>0} is compact.

Where E is the space of fuzzy numbers and R is a proper subset of E.
Define the r-level set x e, [u] ={x\u(x)=r},0<r<1, where [x] ={x\u(x)>0} is

compact Ghanbari (2009) which is a closed bounded interval and denoted by
(1], = ( 1(x), ﬁ(x)).In the parametric form (Dubois and Prade, 1982) which is represented

by an ordered pair of function (/_J(X;r),ﬁ(x;r)),re[o,l] that satisfies the following

conditions:
1. H(X; r)is bounded left continuous non-decreasing function over [0,1].

2. Z(x;r)is bounded left continuous non-increasing function over[0,1].
3. u(x;r)< z(xr). Acrisp number r is simply represented by u(r)=z(r)=r.

Definition 2.3 Fard (2009) A mapping f : T — E for some interval T c E is called
a fuzzy process or fuzzy function with crisp variable, and we denote r-level set by:

[f(x;r)]r :[i(x;r), f_(X;r)],XET,I’E[O,l]

where E be the set of all upper semicontinuous normal convex fuzzy numbers.

Definition 2.4 Zadeh(2005) Each function f:X —Y induces another function
f:F(X)—>F(Y) defined for each fuzzy interval U in X by:

- Sup,_...U(x), if yerange(f)
I
0, if ye(f)

This is called the Zadeh’s extension principle.

Definition 2.5 Sriram and Murugadas (2010) A fuzzy matrix of order mxs is
defined [AJz[éﬁ, ygij] as, where u, is the membership function of the element

3, in[A],vau €E fori=12,..mand j=12,...,s. Thus for allr [0,1]
(Al =[AA] and[&] ~[a,.3]

Derivation of the Method

In this section, we construct the main method and additional methods derived from its
second derivative which are combined to form the four-step Extended Block Backward
Differentiation Formula (EBBDF) on the interval from x, to X, +kh where hbe the chosen

step-length. We assume that the exact solution y(x)on the interval [x,,x,.,] is locally
represented by Y(x) given by
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p+q-1

= 2 b;o;(x) (1)
j=0

b, are unknown coefficients to be determined, and ¢, (x) are Legendre polynomial basis

function of degree p+q—1 such that the number of interpolation points and the number of
distinct collocation points q are respectively chosen to satisfy p>0 and q>0. The
proposed class of methods is thus constructed by specifying the following parameters:

@, (x)=x1,,j=0.k p=5q=2k=4
By imposing the following conditions

ij Jo=vy..,i=0..4 (2)

Z J(J - jXI’{-HZ = fn+i1 | =O,...4 (3)
j=0

Assuming thaty, =Y(xn +ih), denote the numerical approximation to the exact solution
Y(Xpi ) Foi =Y"(x, +ih,,y,,;), denote the approximation to y’(x,,) and nis the grid

index. It should be noted that equation (2) and (3) lead to a system of seven equations
which must be solved to obtain the coefficients b;, j=0,1..,6.The main method is then

obtained by substituting the values of b, into equation (2). After some algebraic
computation, the method yields the expression in the form (4).

)37, (0 (mx)fls +ﬂ4(x>f4j @

4 4

Where aj( X) j =012...., a5 (x), B (X), B,(x)are continuous coefficients. The continuous
4 4

4
form in (4) are evaluated at x = X, ,, to obtain the main method as
Yo = 2797 Y — 11432 Voot 41430 y 1268216 y +314654720 Vot
" 2952747 7" 1202971°"" 765527 T"? 2952747 °™° " 227361519 ~n+
37376 , 1692 ,
h*f 15 h n+4
328083 n+,; 109361
Differentiating (4) twice to obtain the additional method at x = X

(5)

n+1? X= Xn+2 ' X= Xn+3 as

19697337 2908143 14399488 4904669
yn+3:—yn+2_—yn+l_—y l5+—yh+
32100299 32100299 32100299 “n+7 32100299
L 1| os50872f s —5026329f , —6889743f ,
32100299 nes )
y - 184320 y o 96881 y , 1445682 v 77154 v
"2 2521662 “n+ 2521662 °"° 2521662 """ 2521662 "
1 h| _305536f s +173327f , —1202971f
2521662 ne) @
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44619776 96881 41892741 409871
yI’H—l T T oA y 15 Rilyprrpr— yn+3 By n+1 rerYEry) n
4828761 "n+,; 4828761 4828761 4828761

1 h2[1315776f , —1735965f, , —25262391f,
4828761 0t ®)

The first derivative formula is also obtained by differentiating the continuous form in

equation (4) once as follows
420477750h* f, , —802771200h* f . +647551751y, —

n+=—
4

= 1 1745131500y, ,, + 2733179625y, ,, — 2879530500y, ., +

7 =
" 252623910h
1243930624y .
¢ 9)
6820845570hz,,, = 7219392512y . —17750608645y,, .,
n+7

+21483497970Yy,,,, — 9967046355y, , — 985235482y, +

icd
4

23222430h*f, , —56327040nh*f . —1650726y, +

4
Z ., = 1 17439975y,,, —114633090y,,, —125047615y,,,; +
252623910h 223891456y
19

130540410h? f_, —273208320n? f . —21997129y, +

4

h[—4151790720f m——2105548830fm4]

Z,,,=— 1 305930520y, ,, + 874173465y, , —1752289000y,, ., +
974406510h
594182144y .
n+?
88503030h*f,  , +3476309760h* f . + 24233363y, —
n+7
Z,,, = 1 305930520y,,,, +1411179165y,,, —11611207300y,, , +
6820845570h
10420477952y
n+?
1132420905h*f, , —2361355920h*f ,, —70213297y, +
z ,=— 1 719018370y, ,, — 4301529705y, , + 44129411480y, , —
n+g 27283382280h
40476686848y 4

a4

Numerical Examples and Discussion of Results
In this section, the efficiency and accuracy of the EBHBDF method formulated in above is

tested on fuzzy system. The self-starting method is implemented efficiently by combining
the methods as simultaneous numerical integrator for IVP's for example, the method
presented in (5) - (9) are combined to obtain the initial conditions at X, ,, n(mod 4)¢ 0
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and0<n<N using computed values y(x,,,) over sub-interval [x,, X, ]

In this section, we solved the fuzzy differential equations to show the accuracy of the
method proposed in the above. The results of the exact solutions and numerical solutions
are presented in the tables and figures. A comparison of the numerical solutions and exact

Y (tr)=[Y(t,r),Y(tr
solution is carried out to obtain the errors. Let the exact solution (t’ ) ‘—(t’ ) (t’ )‘ ,
the absolute error formula, considered in tables 1 — 2 is as follows:
The error, € is defined as the maximum error through the whole interval of integration.
Maximum Error =€
e=ly-¥Y|. e=[y-V]
The notation used in the tables and figures are the following:
h: stepsize
r : fuzzy numbers with fuzzbounded r —level interval
Y :lower bounded exact solution
:upper bounded exact solution

Y
y: lower bounded numerical solution
y

:upper bounded numerical solution

Problem1: We consider the following fuzzy linear initial value problem.
y" =-y, x=0
y(0) = 0,y'(0) = [0.9 + 0.1r,1.1 — 0.1r]
Exact solution at x = 1
Y(x,r) =[(0.9 + 0.1r) sin(x), (1.1 —0.1r)sinx]

Problem 2: We consider the following fuzzy linear initial value problem
y =—y+x, x>0
y'(0) = [1.8 4+ 0.2r,2.2 — 0.2r]
Exact solution at x =1

4 1 . 9 1
Yy = <§+§r) sinx + (—+—T> cos(x) + x

10 10
_ (6 1 )) 4 (11 1 ) N
y, = c 5rsm(x 10 1Or cosx + x

Problem 3: We consider a second-order Fuzzy linear differential equation with positive
coefficients, subject to Fuzzy boundary conditions.

y'+y+t=0

y(0) = y(1) =[0.1r —0.1,0.1—-0.1r] Exact solutions: First condition;

Y[t,r]=-t+(0.1r —0.1) cos(t) + (1.13376-+ 0.0546302) sin(t)

Second condition; V[t, r]=-t+(0.1-0.1r)cos(t) + (1.24303— 0.0546302) sin(t)

Problem 4
' 2
y"(x, r):M, xe[01] y(0,r)=[0.9+0.1r, 1.1-0.1r]

y(x,r)
y(L,r)=[1.9+0.1r, 2.1-0.1r]

Using the Maple 2015 software package to obtained the exact solution of Problem 4 as
follows

105



Journal of Science, Technology, Mathematics and Education (JOSTMED), 16(1), March, 2020

2
Y(xr)=v14+ 0.1r\/0'1(9'0 +1.0r) +2X

14.0+1.0r

—-16.0+1.0r
Also we can represent the exact solution of Problem 4 for all r € [0,1] and Xe [0,1] in figure

2
V(s r):mJ—o-l(—“-O”-of) 2x

4

Table 1: Error at t = 1 in solving problem 1

BDF BBDF EBHBDF
h r ¢ £ £ £ € P
107 0 3.09591e-05 3.78389e-05 5.40487e-05 6.60595e-05  2.80947e-07  3.4337e-07
0.2 3.16471e-05 3.71510e-05 5.52498e-05 6.48584e-05 2.8719e-07 3.3713e-07
0.4 3.23351e-05 3.64630e-05 5.64509e-05 6.36573e-05 2.93433e-07 3.3089e-07
0.6 3.30231e-05 3.57750e-05 5.76519e-05 6.24563e-05  2.99676e-07  3.2464e-07
0.8 3.37111e-05 3.50870e-05 5.88530e-05 6.12552e-05  3.0592e-07 3.1840e-07
1.0 3.43990e-05 3.43990e-05 6.00541e-05 6.00541e-05 3.12163e-07 3.1216e-07
Execution 1.26s 0.6s 0.52s
Time
BDF BBDF EBHBDF
h r ¢ P £ £ € £
1072 0 3.14945e-08 3.84933e-08 6.851e-08 8.373e-08 6.12e-11 7.06e-11
0.2 3.21944e-08 3.77934e-08 7.003e-08  8.221e-08  6.02e-11 7.14e-11
0.4 3.28943e-08 3.70935e-08 7.155e-08  8.069e-08  6.25e-11 6.97e-11
0.6 3.35941e-08 3.63937e-08 7.307e-08  7.916e-08  6.36e-11 6.79e-11
0.8  3.42940e-08  3.56938e-08 7.459e-08  7.764e-08  6.45e-11  6.54e-11
1.0 3.49939%e-08  3.49939e-08 7.612e-08  7.611e-08  6.48e-11  6.48e-11
Table 2: Error at t = 1 in solving problem 2
BDF BBDF EBHBDF
h r £ £ £ £ € P
107t 0 1.708944e-05 2.85313e-05 2.25608e-05 4.09196e-05 1.09762e-07 2.0352e-07
0.2 1.823363e-05 2.73871e-05 2.43967e-05 3.90838e-05 1.19138e-07 1.9414e-07
0.4 1.937782e-05 2.62430e-05 2.62326e-05  3.72479e-05  1.28514e-07  1.8477e-07
0.6 2.052201e-05 2.50988e-05 2.80684e-05 3.54120e-05 1.3789e-07 1.7539e-07
0.8 2.166619e-05 2.39546e-05 2.99043e-05  3.35761e-05  1.47266e-07  1.6601e-07
1.0 2.281038e-05 2.28104e-05 3.17402e-05  3.17402e-05  1.56643e-07  1.5664e-07
Execution 1.26s 0.6s 0.57s
Time
BDF BBDF EBHBDF
roe £ £ £ g £
1072 0 1.67951e-08 2.83038e-08 3.56459e-08 6.04823e-08 2.93e-10 3.51e-10
0.2 1.79460e-08 2.71529e-08 3.81297e-08 5.79987e-08 2.95e-10 3.42e-10
0.4 1.90969e-08 2.60021e-08 4.06131e-08 5.55149e-08 3.04e-10 3.42e-10
0.6 2.02477e-08 2.48512e-08 4.30966e-08 5.30309e-08 3.08e-10 3.33e-10
0.8 2.13986e-08 2.37003e-08 4.55803e-08 5.05478e-08 3.18e-10 3.23e-10
1.0 2.25495e-08 2.25495e-08 4.80643e-08 4.80643e-08 3.26e-10 3.26e-10
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Table 3: Solution of Problem 3 at x=1/12

0 -0.08861562589 -0.08861521274 0.1106903314 01197852491
0.1  -0.07819560308 -0.07819518960 0.1002703086 0.1093652261
0.2  -0.06777558028 -0.06777516657 0.08985028585 0.09894520301
0.3  -0.05735555747 -0.05735514341 0.07943026304 0.08852517997
0.4  -0.04693553467 -0.04693512029 0.04817019462 0.07810515682
0.5  -0.03651551186 -0.03651509720 0.03775017182 0.06768513374
0.6  -0.02609548906 -0.02609507415 0.02733014901 0.05726511070
0.7  -0.01567546625 -0.01567505104 0.01691012621 0.04684508756
0.8  -0.00525544345 -0.005255027944 0.00649010340 0.03642506446
0.9  0.005164579351 0.005164995189 0.008146109966 0.02600504135
1 0.015584602156 0.01558501824 0.018641544080 0.018641543730

Table 4: Difference approximate solution X(X’ r) at h=1/20 for Problem 4

R y(0,r) y(0.2,r) y(0.4,r) y(0.6,r) y(0.8,r) y(1.0,r)

0 0.900000000 1.170466311 1.389241611 1.577971655 1.746424118  1.90000000
0.25 0.925000000 1.193992139 1.412663429 1.601755296 1770768885  1.92500000
0.5  0.950000000 1.217576679 1.436138431 1.625575424 1795131656 1.95000000
0.75 0.9750000000 1.241216591 1.459664055 1.649430460 1.819511708  1.97500000
1 1.0000000000 1.264908775 1.483237895 1.673318913 1.843908357  2.00000000

Table 5: Difference approximate solution V(X, r) at h=1/20 for Problem 4

r y(O,r) y(0.2,r) y(0.4,r) y(0.6,r) y(0.8,r) y(1.0,r)
0 1.0900000000 1.359189815 1.577021613 1.768218943 1.940669873  2.09900000
0.25 1.0750000000 1.336271154 1.554226771 1.745171056 1.917191552  2.07500000
0.5  1.0500000000 1.312438641 1.530521316 1.721190509 1.892748880  2.05000000
0.75  1.0250000000 1.288650350 1.506857690 1.697239374 1.868320953  2.02500000
1 1.483237895 1.673318913 1.843908357  2.00000000

1.0000000000

1.264908775

Table 6: Accuracy of Numerical solution of Problem 4 ath =1/120and r = 0.75

) E
1 _
I:_ZO :|0.75 EL
20 _lo.75

0 0
0.2 2.57E-06 2.05E-06
0.4 2E-06 1.63E-06
0.6 1.26E-06 1.03E-06
0.8 5.88E-07 4.87E-07
1 0
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L
0.9
0.8
0.7
0.6

> 0.5
0.4
0.3
0.2
0.1

0

Exact

EHBDF

0 0.2 0.4 0.6 0.8 1 1.2

r

Figure 2: The exact solution and the approximate solution in Table 1 with h=0.1

2.5

> 1.5

Exact

1 EBHBDF

0.5

0 0.2 0.4 0.6 0.8 1 1.2

r

Figure 3: The exact solution and the approximate solution in Table 2 with h=0.1
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Figure 4: Exact analytical solution of problem 4 for all r € [0,1] and X e [0,1]
2 .
1.95 -

1.9

exact

"85 -
y num

1.8 - num?2

exact
1.75 -

1.7 T T T T 1

0 0.2 0.4 0.6 0.8 1
r

Figure 5: Exact and Numerical solutions at x=0.8 and for all r in Problem 4 when
h=1/120

For problems 1 and 2, the errors of EBHBD are compared with BDF and BBDF proposed by
Fookand et a/ (2017) which are given in Tables 1 and 2, also, the time taken for the
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proposed method are presented in the Tables. It is observed that the absolute error of the
proposed is very small when compared to Foolkand et a/(2017) at different step size.

However, for time taken to calculate the results, the proposed method in this paper has
significant advantages which have more efficient than existing method. Figures 2 and 3
show the approximate solutions of EBHBDF and exact solution. Table 3 show the exact and
numerical solutions with the first and second boundary conditions. It can be observed that
the behavior of the proposed methods is in agreement with the exact solution. From Tables
4 and 5, one can see that the numerical results satisfy the convex triangular fuzzy number
as mentioned in Sect. 2. Also for more illustration of the proposed method in fuzzy

1
environment of problem 4, we solved this problem at r =0.75 with step size h :% for

0<x, <1 1=012, n asshown in Table 6

Conclusion

In this study, we have presented extended block hybrid backward differentiation formula for
the solution of fuzzy differential equations using collocation and interpolation techniques.
The method proposed performs better than existing method found in the literature. The
method avoids complicated subroutines needed for existing methods requiring starting
values or predictors. We have demonstrated the accuracy of the methods for fuzzy
differential problems. It is recommended that future research be focused on the
implementation of the method to parabolic partial differential equations.
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