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Abstract

In this work, we carried out a mathematical study of diabetes

and its complications. A deterministic mathematical model of the

Diabetes Mellitus disease was presented. The model equations were

solved using the Homotopy Perturbation Method. Graphs were gener-

ated from the results obtained using Maple software. It was observed

that the parameters involved play a crucial role in the size of popu-

lation of diabetics and the number of diabetics with complications at

time t.
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1 Introduction

Diabetes Mellitus is simply caused by the failure of the body to produce the
right amount of insulin to stabilize the amount of sugar in the body [1].

Most patients who suffer this type of body failure are recommended to take
insulin injection. This is called diabetes type I. Diabetes type II is the pa-
tient’s body rejection to insulin. This type of patient is recommended to
undergo a certain health meal program as well as performing exercises to
lose weight in addition of oral medication. However, heart diseases are likely
to strike these patients in the long run [2].

Gestational Diabetes can occur temporarily during Pregnancy which is due
to the hormonal changes and usually begins in the fifth or sixth month of
pregnancy (between the 24th and 28th weeks). Gestational Diabetes usually
resolves once the baby is born. However, 25-50 % of women with gestational
diabetes will eventually develop diabetes later in their life, especially those
who require insulin during pregnancy and those who are overweight after
their delivery [3].

Sharief and Sheta [3] enhanced the detection of diabetic by using a set of
attributes collected from the patients to develop a mathematical model us-
ing Multigene Symbolic Regression Genetic Programming technique. Ge-
netic Programming (GP) showed significant advantages on evolving nonlinear
model which can be used for prediction. The developed GP model was eval-
uated using Pima Indian data set and showed higher capability and accuracy
in detection and diagnosis of Diabetes.

Rosado [4] presented a mathematical model that determines diabetes in pa-
tients based on the results of the 5-hour glucose intolerance test. Their model
extended the one proposed by Ackerman [5] to include three instead of two
hormone concentrations. In particular, they included concentrations for glu-
cose, glucagon and a global variable that includes other hormones such as
insulin. The model was based on a 3x3 system of non-homogenous ordinary
differential equations. A nonlinear least square method was used to deter-
mine the coefficient parameters of the system based on actual data from the
Glucose Tolerance Test. The simulations also provide an indicator similar
to the one proposed by Ackerman [5], to diagnose a diabetic condition. Ad-
ditionally, they developed a graphical user interface to facilitate keying the
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patient’s data and the visualization of the results.

De Gaetano et al [6] formulated a model of the pancreatic islet compensation,
its physiological assumptions were presented, some fundamental qualitative
characteristics of its solutions were established, the numerical values assigned
to its parameters were extensively discussed (also with reference to available
cross-sectional epidemiologic data), and its performance over the span of a
lifetime was simulated under various conditions, including worsening insulin
resistance and primary replication defects. The differences with respect to
two previously proposed models of diabetes progression were highlighted,
and therefore, the model was proposed as a realistic, robust description of
the evolution of the compensation of the glucose-insulin system in healthy
and diabetic individuals.

Boutayeb et al [7] used ordinary differential equations and numerical approx-
imations to monitor the size of populations of diabetes with and without
complications. They discussed different scenarios according to a set of pa-
rameters and the dynamical evolution of the population from the stage of
diabetes to the stage of diabetes with complications was clearly illustrated.
Their model shows how efficient and cost-effective strategies can be obtained
by acting on diabetes incidence and/or controlling the evolution to the stage
of complications.

Fundamentals of Homotopy Perturbation Method (HPM), first proposed by
Ji Huan [8,9], has successfully been applied to solve many types of linear
and nonlinear functional equations. This method, which is a combination of
homotopy in topology and classic perturbation techniques, provides a conve-
nient way to obtain analytic or approximate solutions for a wide variety of
problems arising in different fields.

The HPM used by He to solve the Lighthill equation [8], the Duffing equation
[10] and the Blasius equation [11], found its way into sciences and has been
used to solve nonlinear wave equations [12], boundary value problems [13, 14],
quadratic Riccati differential equations [15], integral equations [16, 17, 18],
Klein–Gordon and sine–Gordon equations [19, 20], initial value problems [21,
22], Schrödinger equation [23], Emden–Fowler type equations [24], nonlinear
revolution equations [25], differential-difference equations [26], modified KdV
equations [27] and many other problems. This wide variety of applications
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shows the power of HPM in solving functional equations.
In this study we extended the work of Boutayeb [7] by carrying out a math-
ematical study of diabetes and its complication using the Homotopy pertur-
bation method.

2 The Mathematical Model
Following Boutayeb et al [7], the mathematical equation describing the dy-
namics of diabetes and its complications is given by the ordinary differential
equations (ODEs).

dD
dt

= I − (λ+ µ)D + γC
dC
dt

= I + λD − (γ + µ+ ν + δ)C

}

(2.1)

D = D(t) represents the number of diabetics without complications.
C = C(t) represents the number of diabetics with complications.
I = I(t) denotes the incidence of Diabetes Mellitus.
µ represents natural mortality rate.
λ represents the probability of a diabetic person developing a complication.
γ represents the rate at which complications are cured.
ν represents the rate at which diabetic patients with complication become
severely disabled.
δ represents the mortality rate due to complications.
N = N (t) = C (t) +D(t) denotes the size of population of diabetics at time
t.

With N = D + C, we obtained

dC
dt

= − (λ+ θ)C + λN, t > 0
dN
dt

= I − (ν + δ)C − µN

}

(2.2)

where θ = γ + µ+ ν + δ

with initial conditions

C (0) = C0, N (0) = N0 (2.3)
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3 Solution by the Homotopy Perturbation Method
To illustrate the basic ideas of the method, He [9] considered the following
nonlinear differential equation:

A(u)− f(r) = 0, r ∈ Ω (3.1)

subject to the boundary condition:

B(u,
du

dn
) = 0, r ∈ Γ (3.2)

where A is a general differential operator, B is a boundary operator, f(r) is
a known analytical function and Γ is the boundary of the domain Ω. The
operator A can be divided into two parts L and N , where L is the linear
part, and N is the nonlinear component. Equation (3.1) may therefore be
rewritten as:

L(u) +N(u)− f(r) = 0, r ∈ Ω (3.3)

The homotopy perturbation structure is shown as follows

H(v, p) = (1− p)[L(v)− Lu0] + p[A(v)− f(r)] = 0 (3.4)

where
v(r, p) : Ω → R (3.5)

In equation (3.4), p ∈ [0, 1] is an embedding parameter and u0 is the first
approximation that satisfies the boundary condition. It can be assumed that
the solution of equation (3.4) can be written as power series as follows:

v = v0 + pv1 + pv2 + ... (3.6)

The best approximation for the solution is:

u = lim
p→1

v = v0 + v1 + v2 + ... (3.7)

The series (3.6) is convergent for most cases; however, the convergence rate
depends on the nonlinear operator A(v) [9].
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From (2.2)
dC

dt
= − (λ+ θ)C + λN (3.8)

dN

dt
= I − (ν + δ)C − µN (3.9)

Applying homotopy perturbation to equation (3.8) and (3.9)
with

q = λ+ θ

m = ν + δ

we obtained,

(1− p)
dC

dt
+ P

(

dC

dt
+ qC − λN

)

= 0 (3.10)

(1− p)
dN

dt
+ P

(

dN

dt
− I +mC + µN

)

= 0 (3.11)

i.e.,
dC

dt
+ P (qC − λN) = 0 (3.12)

dN

dt
+ p (−I +mC + µN) = 0 (3.13)

Let
C = C0 + pC1 + P 2C2 + . . .

N = N0 + pN1 + P 2N2 + . . .

}

(3.14)

dN
dt

= dC0

dt
+ dC1

dt
+ P 2 dC2

dt
+ . . .

dN
dt

= dN0

dt
+ dN1

dt
+ P 2 dN2

dt
+ . . .

}

(3.15)

Substituting (3.14) and (3.15 into equations (3.12) and (3.13), we have

dC0

dt
+ p

dC1

dt
+ p2

dC2

dt

+p

[

q (C0 + pC1 + P 2C2)
+λ (N0 + pN1 + p2N2)

]

= 0 (3.16)
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dN0

dt
+ p

dN1

dt
+ p2

dN2

dt

+p

[

−I +m (C0 + pC1 + p2C2)
+µ (N0 + pN1 + p2N2)

]

= 0 (3.17)

P 0 :
dC0

dt
= 0, C0 (0) = C (3.18)

p1 :
dC1

dt
+ qC0 − λN0 = 0, C1 (0) = 0 (3.19)

P 2 :
dC2

dt
+ qC1 − λN1 = 0, C2 (0) = 0 (3.20)

P 0 :
dN0

dt
= 0, N0 (0) = N0 (3.21)

P 1 :
dN1

dt
− I +mC0 + µN0 = 0, N1 (0) = 0 (3.22)

p2 :
dN2

dt
+mC1 + µN1 = 0, N2 (0) = 0 (3.23)

From equation (3.18) we get

C0 (t) = C0.

Similarly from equation (3.21) we get

N0 (t) = N0.

From equation (3.19)
dC1

dt
= −qC0 + λN0.

Integrating with respect to t, we have

C1 (t) = (−qC0 + λN0) t+K1

C1 (0) = 0 +K1 = 0.
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This implies

K1 = 0.

Therefore

C1 (t) = (−qC0 + λN0) t;

i.e.,

C1 (t) = αt,

where

α = −qC0 + λN0.

From equation (3.22)
dN1

dt
= I −mC0 − µN0.

Integrating with respect to t, we have

N1 (t) = (I −mC0 − µN0) t+K2 .

At t = 0

N1 (0) = 0 +K2 = 0.

This implies

K2 = 0.

Therefore

N1 (t) = (I −mC0 − µN0) t;

i.e.,

N1 (t) = βt,

where

β = I −mC0 − µN0.

From equation (3.20)
dC2

dt
+ qC1 − λN1 = 0

dC2

dt
= −qαt+ λβt.
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Integrating with respect to t, we have

C2 (t) = −
1

2
qαt2 +

1

2
λβt2 +K3.

At t = 0
C2 (0) = 0 +K3 = 0.

This implies
K3 = 0

Therefore,

C2 (t) =
1

2
(λβ − qα) t2.

From equation (3.23)
dN2

dt
+mC1 + µN1 = 0

dN2

dt
= −mC1 − µN1

dN2

dt
= −mαt− µβt.

Integrating with respect to t, we have

N2 (t) =
1

2
(−mα − µβ) t2 +K4.

At t = 0
N2 (0) = 0 +K4 = 0

This implies
K4 = 0.

Therefore

N2 (t) =
1

2
(−mα− µβ) t2.

According to Homotopy Perturbation

C (t) = lim
p→1

C0 (t) + P 1C1 (t) + P 2C2 (t)
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C (t) = C0 (t) + C1 (t) + C2 (t)

i.e.,

C (t) = C0 + αt+
1

2
(λβ − qα) t2

N (t) = lim
p→1

N0 (t) + P 1N1 (t) + P 2N2 (t)

N (t) = N0 (t) +N1 (t) +N2 (t) i.e.,

N (t) = N0 + βt+
1

2
(−mα− µβ) t2.

Hence the solution of equation (2.2) is given by

C (t) = C0 + αt+
1

2
(λβ − qα) t2

and

N (t) = N0 + βt+
1

2
(−mα− µβ) t2,

where
α = (−qC0 + λN0) ,

β = (I −mC0 − µN0) ,

θ = γ + µ+ ν + δ,

q = λ+ θ and
m = ν + δ.
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4 Results

In this section, we used a mathematical software (Maple 16) to carry out the
numerical simulations of N(t) andC(t) and the results are presented below
in graphical form.
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5 Discussion of Results, Conclusion, and Recommendations

5.1 Discussion of Results

Figure 4.1 and 4.2 show the graphs of N(t) and C(t) against t respectively
for different values of I. It was observed that the number of diabetics in-
creases faster as the incidence of Diabetes Mellitus increases while diabetics
with complications decreases faster as the incidence of Diabetes Mellitus de-
creases.

Figure 4.3 and 4.4 display the graphs of N(t) and C(t) against t respec-
tively for different values of υ. It was observed that the number of diabetics
increases slightly faster as the rate at which diabetic patients with complica-
tions become severely disabled increases. while diabetics with complications
decreases faster as the incidence of Diabetes Mellitus increases.

Figure 4.5 and 4.6 display the graph of N(t) and C(t) against t respectively
for different values of δ. It was observed that the number of diabetics in-
creases slightly faster as the mortality rate due to complications decreases.
while diabetics with complications decreases faster as the mortality rate due
to complications increases

Figure 4.7 and 4.8 display the graph of N(t) and C(t) respectively against
t for different values of µ. It was observed that N(t)increases faster as the
natural mortality rate decreases while C(t) decreases faster as the natural
mortality rate increases.

Figure 4.9 and 4.10 display the graph of N(t) and C(t) respectively against
t for different values of γ. It was observed that the rate at which complica-
tions are cured had no effect on both N(t) and C(t).

Figure 4.11 displays the graph of N(t) against t for different values of λ. It
was observed that the rate at which complications are cured had no effect on
N(t).
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Figure 4.12 displays the graph of C(t) against t for different values of λ. It
was observed that the number of diabetics with complication increases faster
as the probability of diabetic persons developing a complication increases.

5.2 Conclusion
We studied a deterministic mathematical model of diabetes using the Homo-
topy Perturbation method and the result obtained shows that the parameters
involved played a crucial role in the size of population of diabetes at time t

and the number of diabetics with complication.

5.3 Recommendations
Like every other work, this work is not without limitation and can be im-
proved. Diabetes is a deadly disease if not detected and taken care off early;
hence it is recommended that further research should be carried out such as
considering the variable incidence of Diabetes Mellitus and so on.
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