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ABSTRACT 

In the current work, Boundary layer flow of rarefied gas over a flat plate with constant heat flux 
boundary conditions is presented and solved numerically. The first-order slip boundary condition is 
adopted in the derivation. By using appropriate similarity variables, the fundamental equations of the 
boundary layer are transformed to ordinary differential equations. These ordinary differential 
equations are solved numerically using a fourth order Runge-Kutta and shooting method. The 
dimensionless velocity, temperature and shear stress profiles are plotted and discussed. Consequently, 
the velocity profiles, temperature profiles and the wall shear stress exhibit a dependence on the slip 
coefficient. It is found that an increase in slip parameter leads to an increase in velocity and a fall in 
skin-friction.  
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INTRODUCTION 

It was Blasius who solved the boundary layer 
problem for a free stream past a fixed flat plate 
using a similarity transformation technique  
(White, F. M., 1991). Klemp and Acrivos 
(1972) studied the boundary layer flow for a 
free stream past a moving semi-infinite flat 
plate. However, in many engineering 
applications in micro-scale such as in Micro-
Electro-Mechanical Systems (MEMS), 
compared to the characteristic length of the 
micro-devices, the fluid behavior might be 
treated as a rarefied gas (Gad-el-Hak, M., 
1999). On the other hand, for large-scale 
problems with low density, the fluid is also 
modeled as a rarefied gas, for example, in 
outer space applications (Shidlovskiy, V. 
P.,1967). The behavior of a rarefied gas is 
determined by the Knudsen number, Kn, 
which is defined as the ratio of the mean free 
path of the fluid molecules to a characteristic 
length of the flow. The flow can be classified 
into four regimes according to the magnitude 
of the Knudsen number. If Kn>10 it is the free 
molecule flow, if 10 >Kn>0.1 it is the 
transition flow, if 0.1 >Kn>0.01 it is the slip 
flow, and if Kn<0.01 it is the conventional 
viscous flow. For the flow in the slip regime, 
the fluid motion still obeys the Navier–Stokes 
equations. The Blasius boundary layer flow 

with slip condition at the wall was discussed in 
(Martin, M. J. and Boyd, I. D., 2000) . In many 
problems, particularly those involving the 
cooling of electrical and nuclear components, 
the wall he at flux is specified. In such 
problems, over heating burnout and meltdown 
are very important issues. From practical stand 
point, an important wall model is considered 
with constant heat flux. In many applications, 
the wall heating effect is the result of radiation 
heating (the constant heat flux condition 
applies to nuclear radiation heating) from the 
other side or, as in the case of electronic 
components, the result of resistive heating 
(Bejan, A., 1995 ). The problems with 
prescribed heat flux are special cases of the 
vast analytically accessible class of problems. 
Sparrow et al (1958), Merkin et al. (1989), 
Lee.et al. (1992), Malarvizhi et al. (1994), 
Burak et al.(1995)  and Pantokratoras, 
A.(2003)  are some of the researchers who 
have investigated the convection flow with 
prescribed heat flux conditions. 

Therefore, in this paper, Boundary layer flow 
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of rarefied gas over a flat plate with constant 
heat flux boundary conditions and will be 
solved and discussed. 

MATHEMATICAL FORMULATION 

The two dimensions, steady laminar, external 
fluid over a surface with slip boundary 
conditions, which move with constant velocity 
!!  in a viscous incompressible fluid, the 
ambient fluid or the far flow from the plate 
moves with constant velocity ! = !!+∈   in 
the direction of the plate velocity.  It is 
assumes that the no slip condition on the flat 
plate is replaced with partial slip condition on 
the form ! !, 0 = !! + !

!!
!! !!!

  (Zhu, j. 

et al); when ! and ! are the Cartesian 
coordinates along the plate and normal to it, 
respectively, u is the velocity component along 
the ! –direction and A is the slip coefficient . 

The continuity, momentum and energy  
equations are given by 

!"
!"
+ !"

!"
= 0   (1) 

! !"
!"
+ ! !"

!"
= ! !

!!
!"!

  (2) 

! !"
!"
+ ! !"

!"
= ! !!!

!"!
  (3) 

With associated boundary conditions: 

! = 0, ! !, 0 = !! + !
!"
!" !!!

, ! =

0  ,−! !"
!"

!, 0 = !"    

! → ∞, ! = !! + !  ,! = !!  

We assume that  ! = !!
!!

!/!
!, where ν is the 

kinematic viscosity of the fluid and λ is the 
slip parameter, which is non-negative constant. 

We define the similarity variable ! 

=! !!
!"
, ! = !! + !! ! , ! =

!
!

!!
!"

!!! ! − !  and ! = !!!!
!"
!

!"
!!

!
!
 which 

was introduce by Bejan [6]; then the Nervier-
Stokes equations in dimensions under 
boundary layer approximations reduces to the 
following governing differential equation and 
the boundary conditions for this problem and 
are given by Bejam, A. (1995). 

!'"+ 1
2
ff" = 0    (4) 

!" + !
!
!" !!! − !′! = 0    (5) 

! = 0, ! 0 = 0, !! 0 = 1 + !"" 0 , !′ 0 =
−1               (6)
  

! → ∞, !! ∞ = 1 + !, ! ∞ = 0  (7) 

Where  ! = !!!!!
!!

  and = !!"#$
!!

=

!
!
− 1 !!,!!"!

!
! is dimensionless parameter 

with !!,! =
!
!
,!!!

!
! = !!

!!
 .  

The slip velocity at an isothermal wall can be 
obtained based on Maxell’s first order 
approximation as  (White, 1999 and Gad-el-
Ha, 1999),. 

!!"#$ =
!
!
− 1 ! !"

!"
  where σ is the tangential 

momentum accommodation coefficient and l is 
the mean free path. 

Numerical methods 

Eqs. (3) and (4) along with boundary 
conditions are solved using shooting method 
by converting them to an initial value problem. 

We set 

!! = ! 

!! = ! 

!! = −
!"
2

 

!! = ! 

!! = −
1
2
!"#$ + !" 

with the boundary conditions 

! 0 = 0, ! 0 = 1 + ! 0 , ! 0 = −1 

In order to integrate (17) and (18) as an initial 
value problem we require a value for p(0) 
i.e.!" 0   and ! 0  but no such values are 
given in the boundary. The suitable guess 
values for!" 0   and ! 0  are chosen and then 
integration is carried out. We compare the 
calculated !′  and !"#$ = 4 (say) with the 
given 
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boundary conditions !!(4) = 1 + !  and 
! 4 = 0 and adjust the estimated values, 
!" 0   and ! 0 to give a better approximation 
for the solution. We take the series of values 
for !" 0   and ! 0 , and apply the fourth order 
classical Runge–Kutta method with step-
size∆! = 0.01. The above procedure is 
repeated until we get the converged results 
within a tolerance limit of 10!!.  

Table.1: Effects of Pandtlnumbers  on the 
skin friction and temperature at  =0  

Pr Λ ! !" 0  ! 0  
0.0
1 

1 0.
2 

0.0759057962 2.926230422 

0.0
5 

1 0.
2 

0.0759057962 2.669318505 

0.1 1 0.
2 

0.0759057962 2.414296225 

1 1 0.
2 

0.075089692 1.067059526 

2 1 0.
2 

0.075905795 0.760090631 

3 1 0.
2 

0.075905794 0.621894645 

4 1 0.
2 

0.075905794 0.539236910 

 

Table.2: Effects of !  on the skin friction and 
temperature at =0 

Pr λ ! !" 0  ! 0  
0.71 1 -0.6 -0.192216656 1.604056639 
0.71 1 -0.4 -0.133843477 1.502614995 
0.71 1 -0.2 -0.069692518 1.413898806 
0.71 1 0  1.335932554 

0.71 1 0.2 0.074890280 1.267091044 
0.71 1 0.4 0.154584485 1.206011630 
0.71 1 0.6 0.238683358 1.151545785 
 

Table.3: Effects of slip constant on the skin 
friction and temperature at =0 

Pr Λ ! !" 0  ! 0  
0.71 3 0.2 0.043050464 1.246521918 
0.71 5 0.2 0.030137967 1.238635283 
0.71 10 0.2 0.017201574 1.230974699 
0.71 15 0.2 0.012031379 1.227977356 
0.71 20 0.2 0.009250157 1.226379715 
0.71 25 0.2 0.007513135 1.225387057 
0.71 30 0.2 0.006325266 1.224710488 
 

 

 

 

 

 

 

 

 

RESULTS AND DISCUSSION 

	
  
 Fig.1. Velocity distribution as a function of η 
for various values of  
  

 
Fig.2. Variation o f the velocity  gradient as 
function of η for various values of  
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Fig.3. Variation o f the of the non-dimensional 
temperature as function of η for various values 
of  
	
  

 
Fig.4. Variation of the velocity profile as 
function of η for various values of λ 

 
Fig.5. Variation o f the of the velocity gradient 
as function of η for various values of λ 

 
Fig.6. Variation o f the of the non-dimensional 
temperature as function of η for various values 
of pandtl	
  

 

In order to get a clear insight of the physical 
problem, numerical computations have been 
carried out using the method described in the 
previous section for various values of different 
parameters such as velocity ratio parameter 
(є), slip parameter (λ) and Prandtl number (Pr) 
encountered in this problem. For illustrations 
of the results, numerical values are plotted in 
Figs. 1–6. Table1, table2 and table3 represent 
the effect of pandtl number,ϵ and slip constant 
on skin friction and temperature at η=0.The 
influences of velocity ratio parameter (є) on 
velocity, shear stress and temperature are 
presented in Figs. 1–3. With the increasing 
velocity ratio parameter, fluid velocity 
increases in Fig.1. Fig. 2 exhibits that the shear 
stress decreases with increasing velocity ratio 
parameter. It is quite obvious that the velocity 
within the boundary layer increases as the free 
stream velocity increases. The temperature is 
found to decrease with increasing є (Fig. 
3).Fig 5 and Fig 5 show variation of 
dimensionless velocity and velocity gradient 
as function of η. These figure indicate that in 
case of no slip condition (without micro 
channel), the velocity at the wall is equal to 
one. With the increasing values of λ, the fluid 
velocity increases monotonically.Due to the 
slip condition at the plate the velocity of fluid 
adjacent to the plate has some positive value 
and accordingly the thickness of momentum 
boundary layer decreases. . Increasing slip 
coefficient λ tends to decrease the skin friction 
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coefficient in Fig. 5 because of increasing fluid 
velocity at the wall. In addition, the gradient of 
the velocity and boundary layer thickness tend 
to decrease by increasing λ.  Fig.6 
demonstrates the effect of the Prandtl number 
to the temperature distribution. The 
temperature (at a fixed η) as well as the 
thermal boundary layer thickness rapidly 
decreases with increasing values of Pr under 
slip condition. An increase in Prandtl number 
means an increase of fluid viscosity which 
causes a decrease in the flow velocity and the 
temperature decreases. This is consistent with 
the fact that the thermal boundary layer 
thickness decreases with increasing Prandtl 
number. 

Conclusion 

The boundary layer flow of rarefied gas over a 
flat plate with constant heat flux boundary 
conditionshave been obtainednumerically. Our 
study reveals that the parameters involved in 
thestudy viz. slip parameters; velocity ratio 
and Prandtl number significantly affect the 
flow field and temperature distribution. It is 
hoped that by our model study, the physics of 
flow over a flatplate can be utilized as the 
basis of many engineering and 
scientificapplications. The results pertaining to 
this study will serve as amotivation for future 
experimental work which seems to be lacking 
atthe present time.   
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