3" International Engineering Conference (IEC 2019)
Federal University of Technology, Minna, Nigeria

TOWARDS A HYBRID MQTT-COAP PROTOCOL FOR DATA
COMMUNICATIONS IN WIRELESS SENSOR NETWORKS

*Nwankwo, E. I', Onwuka, E. N> & Michael, D3
12,3 Department of Telecommunications Engineering, School of Electrical Engineering and Technology,
Federal University of Technology, Minna , Niger State, Nigeria.

*Corresponding author email: emmanueln_nike@hotmail.com, +2347035448942

ABSTRACT

Wireless Sensor Networks (WSNs) consist of sensor nodes and gateways which are resource constrained devices.
Lightweight communication protocols for WSNs are emerging for Machine to Machine (M2M) communications
and thus there is always going to be a possible conflict of interest on which protocol is best suited for any particular
application. The architecture of these emerging protocols is mainly categorized into the publish-subscribe
architecture and the request-response architecture. Although there are other protocols for data communication in
WSNss, the two protocols of interest in this study are the Message Queuing Telemetry Transport (MQTT) protocol
based on the publish-subscribe architecture and the Constrained Application protocol (CoAP) based on the request-
response architecture. Studies have shown that the performance of these different protocols are dependent on
different network conditions and they have complimentary advantages and disadvantages. MQTT messages
experience lower delays than CoAP for lower packet loss and higher delays than CoAP for higher packet loss.
MQTT is also considered very scalable since message subscribers do not need to know about the publishers and
vice-versa as opposed to CoAP where the client has to explicitly know the server address to be able to make
requests. In this paper we propose a hybrid MQTT-CoAP protocol technique for data communication in wireless

sensor networks that harnesses the advantages of both MQTT and CoAP protocol.

Keywords: CoAP, Hybrid protocol, Machine to Machine Communication, MOTT, Wireless Sensor Network

1 INTRODUCTION

In recent years, introduction of smart sensors in the market
place has given rise to considerable advancements in the
development of wireless sensor networks (WSNs). Smart
sensor nodes are low power devices equipped with one or
more sensors, possibly with an actuator, a processor unit,
memory/storage unit, a power supply and a wireless
communication radio (Akyildiz, Weilian Su,
Sankarasubramaniam, & Cayirci, 2002).

As the Internet of Things (IoT) expands to numerous
applications through the increasing minimization of
hardware, availability of versatile sensors, and “‘smart
objects” (Giusto, Iera, Morabito, & Atzori, 2010), many
potential protocols are emerging for M2M communications
thus, the question of which protocol to use for the Internet
of Things becomes a topic of high interest. From an end-
to-end perspective, a WSN can be viewed as comprising of
two subnets; a subnet connecting sensor nodes and one or
more gateway nodes in which sensor nodes route data until
it reaches one of the gateways using WSN protocols (e.g.,
Collection Tree Protocol (Gnawali, Fonseca, Jamieson,
Moss, & Levis, 2009)), and another subnet connecting the
gateway and a back-end server or broker. The typical
communication architecture for WSNs is shown in Figure
1 below. Sensor data generated by sensor nodes are
delivered to the server through the gateway. Meanwhile,
clients that are interested to receive sensor data connect to
the server to obtain the data. To transfer all the sensor data
collected by a gateway node to a server, the former requires

397

a protocol that is bandwidth-efficient, energy-efficient and
capable of working with limited hardware resources. As a
result, protocols such as Message Queue Telemetry
Transport (MQTT) (MQTT, 2014) and Constrained
Application Protocol (CoAP) (Shelby, 2013) have been
proposed to specifically address the difficult requirements
of real-world WSN deployment scenarios.

One way for wireless sensor networks to transfer data from
a gateway to clients is the “request-response” also known
as “client-server” architecture which is supported by
CoAP. In the client-server architecture, request messages
initiate a transaction with a server, which may send a
response to the client with a matching transaction ID and
this is based on a polling method (Davis, Calveras, &
Demirkol, 2013). Another way is the “publish-subscribe”
architecture (Eugster, Felber, Guerraoui, & Kermarrec,
2003). In this architecture, a client needing data (known as
subscriber) registers its interests with a server (also known
as broker). The client producing data (known as publisher)
sends the data to a server and this server forwards the fresh
data to the subscriber. One of the major advantages of this
architecture is the decoupling of the clients needing data
and the clients sending data. This decoupling enables the
architecture to be highly scalable (Eugster et al., 2003). The
“publish-subscribe” architecture is supported by MQTT
and CoAP (Davis et al., 2013; Thangavel, Ma, Valera, Tan,
& Tan, 2014). The publish-subscribe architecture, emerged
out of the need to provide a distributed, asynchronous,
loosely coupled communication between data generators
and destinations. The solution appears today in the form of
numerous publish-subscribe Message-Oriented

3" International Engineering Conference (IEC 2019)
Federal University of Technology, Minna, Nigeria

ol O
c»

=
'--;
. WSN Nodes

Edge Node

P O //'
Toe N\

ClientA

Internet

(C» Sensor & Actuator

” Communication ¢ MQTT, CoAP, HTTP, AMQP, DDS

ClientB

Figure 1: Typical Wireless Sensor Networks (WSNs) communication architecture

Middleware (MoM) (Jia, Bodanese, Phillips, Bigham, &
Tao, 2014) and recently has been a subject of numerous
research efforts (Chelloug & El-Zawawy, 2018; Hakiri et
al., 2017; Veeramanikandan & Sankaranarayanan, 2017).
Experimental studies as will be highlighted in this paper
have shown that when CoAP is compared with MQTT,
some of the disadvantages offered by one protocol is
complemented by the other protocol and vice-versa, this
study proposes a hybrid MQTT-CoAP protocol technique
that brings the advantages of both protocols to be utilized
in data communication.

2 MESSAGE QUEUE TELEMETRY
TRANSPORT (MQTT) PROTOCOL

MQTT is a lightweight messaging protocol released by
IBM that is based on the publish-subscribe paradigm. This
makes it suitable for resource constrained devices and for
non-ideal network connectivity conditions, such as with
low bandwidth and high latency. The latest version used for
IoT by the OASIS (Cohn, R., & Coppen, 2014) is MQTT
v3.1. Because of its simplicity, and a very small message
header compared with other messaging protocols, it is often
recommended as the communication solution of choice in
IoT. MQTT runs on top of the TCP transport protocol,
which ensures its reliability. In comparison with other
reliable protocols, such as HTTP, and thanks to its lighter
header, MQTT comes with much lower power
requirements, making it one of the most prominent protocol
solutions in constrained environments. As illustrated in
Figure 2 below, there are two communication parties in
MQTT architecture that usually take the roles of publishers
and subscribers, clients and servers/brokers. Clients are the
devices that can publish messages, subscribe to receive
messages, or both. The client must know about the broker

398

that it connects to, and for its subscriber role it has to know
the subject it is subscribing to. A client subscribes to a
specific topic, in order to receive corresponding messages.
However, other clients can also subscribe to the same topic
and get the updates from the broker with the arrival of new
messages. Broker serves as a central component that
accepts messages published by clients and with the help of
the topic and filtering delivers them to the subscribed
clients. For a device to have a role of the broker, it is
necessary to install MQTT broker library, for example
Mosquitto broker (Eclipse, 2019), which is one of best-
known open source MQTT brokers. It should be noted that
there are various other MQTT protocol brokers that are
open for use, which differ by way of implementation of the
MQTT protocol. The clients are realized by installing
MQTT client libraries. Topics in MQTT are treated as a
hierarchy, with strings separated by slashes that indicate the
topic level (Tantitharanukul, Osathanunkul, Hantrakul,
Pramokchon, & Khoenkaw, 2017). One MQTT publisher
can publish messages to defined set of topics. In this case
client will publish the topic: topic/1. This information will
be published to the broker which can temporally store it in
a local database. The subscriber interested in this topic
sends a subscribe message to a broker, specifying the same
topic.

An important feature MQTT offers is the possibility to
store some messages for new subscribers by setting a
’retain’ flag in published messages. Brokers usually discard
messages if there is nobody interested in a topic on which
the publisher sends the updates. By setting a "retain’ flag to
value: true, the broker is informed that it should store the
published message, so it could be delivered to new
subscribers. MQTT uses TCP which is quite critical for
constrained devices and this has led to a proposed MQTT
for Sensor Networks (MQTT-SN) which is an MQTT
version that uses UDP and supports topic name indexing

3" International Engineering Conference (IEC 2019)
Federal University of Technology, Minna, Nigeria

(Govindan & Azad, 2015; Stanford-Clark & Truong,
2013). MQTT-SN added a feature which is the reduced size
of the payloads by using numeric topic IDs rather than long
topic names. At the moment MQTT-SN is only supported
by a few platforms. There is a free broker implementation
called Really Small Message Broker (Xu, Mahendran,
Guo, & Radhakrishnan, 2017) and also EMQTT MQTT-
Broker which supports MQTT-SN through a plugin
(EMQTT, 2013). Since it was designed to be lightweight,
MQTT does not provide encryption, and instead, data is
exchanged as plain-text, which is clearly an issue from the
security standpoint. Therefore, encryption needs to be
implemented as a separate feature, for instance via TLS,
which on the other hand increases overhead.
Authentication is implemented by many MQTT brokers,
through one of the MQTTSs control type message packets,
called CONNECT. Brokers require from clients, that when
sending the CONNECT message, they should define
username/password combination before validating the
connection, or refusing it in case the authentication was
unsuccessful. Overall, security is an ongoing research
effort for MQTT (Lesjak et al., 2015).

Subscriber

Publisher Broker

Publish (Topic, data)

_— Subscribe(Tapic)

Publish (Topic, data)

—
Publish (Topic, data)

—

Figure 2: Publish subscribe architecture of. MQTT

3 CONSTRAINED APPLICATION
PROTOCOL (CoAP)

This protocol was designed for use in constrained devices
with limited processing capability by the Constrained
RESTful Environments (CoRE) working group of IETF
(Shelby, 2013). Similar to HTTP it is based on the
request/response architecture and one of its most defining
characteristics is its use of tested and well accepted REST
architecture. CoAP is considered a lightweight protocol, so
the headers, methods and status codes are all binary
encoded, thus reducing the protocol overhead in
comparison with many protocols. It also runs over less
complex UDP transport protocol instead of TCP, further
reducing the overhead. When a CoAP client sends one or
multiple CoAP requests to the server and gets the response,
this response is not sent over a previously established
connection, but exchanged asynchronously over CoAP
messages. The Figure 3 below shows the request response
architecture of CoAP. The price paid for this reduction is
reliability. Since UDP features reduced reliability, IETF
has recently created an additional standard document,

399

opening up the possibility of CoAP running over TCP
(Bormann, Lemay, Tschofenig, Hartke, & Silverajan,
2018). CoAP relies on a structure that is logically divided
into two layers, the request/response layer and the message
layer. The request/response layer, implements RESTful
architecture and allows for CoAP clients to use methods
like GET, PUT, POST or DELETE when sending requests
to specific URI. (Nguyen & lacono, 2015). The request and
responses are matched through a token; a token in the
response has to be the same as the one defined in the
request. It is also possible for a client to push data, for
example updated sensor data, to a device by using method
POST to its URL. As we can see, in this layer CoAP uses
the same methods as REST HTTP. What makes CoAP
different from HTTP is the second layer. CoAP uses its
second layer known as message layer for reliability by
retransmitting lost packets since UDP does not ensure
reliable connection. The message layer defines four types
of messages: CON (Confirmable), NON (non-
confirmable), ACK (Acknowledgement), and RST (reset).
The CON messages demand an ACK message as reply
from the receiver while the NON messages don’t request
any reply. CoAP has an optional feature that allows clients
to continue receiving changes on a requested resource from
the server (Correia, Sacramento, & Schutz, 2016). This is
achieved by adding an observe option to a GET request.
The server then adds the client to the list of observers for
the specific resource which allows the client to receive the
notifications when resource state changes. This feature
which is considered a variant of the publish-subscribe
architecture, eliminates the need to poll the server
repeatedly for a specific resource trying to get the changed
resource state. In an attempt to get even closer to
publish/subscribe paradigm, IETF has recently released the
draft of Publish-Subscribe Broker that extends the
capabilities of CoAP for supporting nodes with long
interruptions in connectivity and/or up-time (Koster,
SmartThings, Keranen, Jimenez, & Ericsson, 2019). As a
security mechanism CoAP uses DTLS (Rescorla &
Modadugu, 2012) on top of its UDP transport protocol
based on TLS protocol with necessary changes to run over
an unreliable connection giving a secure CoAPS protocol
version. Most of the modifications in comparison to TLS
include features that stop connection termination in case of
lost or out of order packets. As an example, there is a
possibility to retransmit handshake messages. Handshaking
process is very similar to the one in TLS, with the exchange
of client and server ’hello’ messages, but with the
additional possibility for a server to send a verification
query to making sure that the client was sending its “hello’
message from the authentic source address. This
mechanism helps prevent Denial-of-Service attacks.
Through these messages, client and server also exchange
supported cipher suits and keys, and agree on the ones both
sides support, which will further be used for data exchange
protection during the communication. Since DTLS was not
originally designed for IoT and constrained devices, new

3" International Engineering Conference (IEC 2019)
Federal University of Technology, Minna, Nigeria

versions optimized for the lightweight devices have
emerged recently (Panwar & Kumar, 2015; Raza, Shafagh,
Hewage, Hummen, & Voigt, 2013). Some of the DTLS
optimization mechanisms with a goal of making it more
lightweight include IPv6 over Low-power Wireless
Personal Area Network (6LoWPAN) header compression
mechanisms to compress DTLS header (Raza, Trabalza, &
Voigt, 2012). Due to the limitations of DTLS, its
optimization is an open and ongoing research issue
(Granjal, Monteiro, & Sa Silva, 2015; Lakkundi & Singh,

2014).
O @

Client Server

Reply

Request
—_—
CoAP
i ———

Figure 3: Request-response architecture of CoAP

4 RELATIVE ANALYSIS AND
COMPARISON OF MQTT AND CoAP
PROTOCOLS

This section presents a comparative analysis of the two
protocols in terms of message size and overhead, power
consumption and resource requirement, bandwidth and
latency, reliability/QoS and Interoperability, security and
provisioning, loT usage and standardization.

4.1 Message size and overhead

In terms of both message size and message overhead,
studies have shown that CoAP has the lowest compared to
MQTT (Bandyopadhyay & Bhattacharyya, 2013; De Caro,
Colitti, Steenhaut, Mangino, & Reali, 2013; Ngo Manh
Khoi, Saguna, Mitra, & Ahlund, 2015; Thangavel et al.,
2014). This is due to the fact that MQTT runs on TCP
unlike CoAP which runs on UDP, thereby incurring a
higher message size and message overhead for MQTT with
a header size of 2-bytes per message (Naik, 2017).

4.2 Power consumption and Resource requirement

When comparing MQTT and CoAP in terms of normal
power consumption and resource requirement, studies have
shown that CoAP requires the lowest power and resource
compared to MQTT. Various experimental studies found
that CoAP consumes slightly less power and resources in
similar circumstances: unreliable scenario (MQTT QoS 0
vs. CoAP NON), and reliable scenario (MQTT QoS 1 or 2
vs. CoAP CON), while assuming that no packet losses
happened (Bandyopadhyay & Bhattacharyya, 2013;

400

Colitti, Steenhaut, & Caro, 2011; De Caro et al., 2013; Ngo
Manh Khoi et al., 2015; Thangavel et al., 2014).

4.3 Bandwidth and Latency

Experimental studies have shown that CoAP has the lowest
bandwidth consumption and latency compared to MQTT
when transferring the same payload under the same
network condition (MQTT QoS 1 or 2 vs. CoAP CON)
(Bandyopadhyay & Bhattacharyya, 2013; Colitti et al.,
2011; De Caro et al., 2013; Ngo Manh Khoi et al., 2015;
Thangavel et al., 2014). TCP is a major factor as to why
MQTT consumes more bandwidth and has more latency
because the technique employed by TCP during congestion
is for the TCP sender to open the congestion window and
double the number of packets in each round-trip time
(RTT). In CoAP, a UDP transaction requires only two UDP
datagrams, one in each direction; this reduces the network
load response times (Naik, 2017). Experimental studies
have also shown that MQTT messages experienced lower
delays than CoAP for lower packet loss and higher delays
than CoAP for higher packet loss. Moreover, when the
message size is small and the loss rate is equal to or less
than 25%, CoAP generates less extra traffic than MQTT to
ensure reliable transmission (Chen & Kunz, 2016;
Thangavel et al., 2014).

4.4 Reliability/QoS and Interoperability

CoAP protocol does not explicitly define a QoS whereas
MQTT defines three QoS levels: 0- at most once (only TCP
guarantee), 1- at least once (MQTT guarantee with
confirmation), 2- exactly once (MQTT guarantee with
handshake) (Bandyopadhyay & Bhattacharyya, 2013). The
use of TCP in MQTT ensures higher reliability compared
to CoAP. In terms of interoperability, CoAP is a HTTP-
based RESTful protocol and thus offers higher
interoperability compared to MQTT because all that is
needed to support message exchange is in the HTTP stack
(Naik, Jenkins, Davies, & Newell, 2016).

4.5 Security and provisioning

Studies have shown that MQTT is a messaging protocol
with the lowest level of security compared to CoAP.
MQTT has minimal authentication features aside TLS/SSL
and relies only on simple username and password. CoAP
on the other hand uses DTLS and IPSec for authentication,
integrity and encryption (Naik, 2017).

4.6 IoT Usage and Standardization

MQTT has been employed by a larger number of
organizations without yet becoming a global standard
while CoAP has been less used by organizations but its
technique being much closer to HTTP is considered to be
of higher standardization (Naik, 2017). MQTT is an
established M2M protocol and has been used and supported
by the large number of organizations such as IBM,
Facebook, Eurotech, Cisco, Red Hat, M2Mi, Amazon Web

3" International Engineering Conference (IEC 2019)
Federal University of Technology, Minna, Nigeria

Services (AWS), InduSoft and Fiorano (Bandyopadhyay &
Bhattacharyya, 2013; De Caro et al., 2013; Thangavel et
al., 2014).

5 RELATED WORK AND JUSTIFICATION

Dizdarevic et al (2019) in their paper on a survey of
communication protocols for internet of things and related
challenges of fog and cloud computing integration,
discussed multiple protocol solutions for IoT to Fog
computing and then to Cloud computing. In their study they
proposed a HTTP-CoAP solution or an MQTT-AMQP
solution but the technique used involved having for
example, the CoAP protocol functioning between IoT
devices and the Gateway and the HTTP protocol
functioning between the gateway and the Cloud. Also, their
multiple protocol solution involved protocols of similar
architecture.

Thangavel et al (2014) conducted an experimental study on
the performance evaluation of MQTT and CoAP using a
common middleware. They designed a common
middleware on the gateway using a common API capable
of interfacing with CoAP, MQTT and any other
lightweight protocol that they care to attach. Their
multiprotocol ~ implementation ~ was limited to
gateway/broker to client/end user and did not offer
solutions for working with nodes. This work is an extension
of the work done by Thangavel et al with an improvement
of implementing the hybrid technique in the nodes as well
and not just on the gateway.

A hybrid of MQTT-CoAP protocol is necessary because
for WSNs that use only the MQTT protocol,
communicating or requesting a resource from the node
directly cannot be done without going through the broker
which increases the latency and bandwidth consumption.
On the other hand, WSNs that use only the CoAP protocol
are not as scalable because of the coupling between clients
and servers and also since there is no inherent capability in
the CoAP protocol to retain messages from nodes.

WSN design is application specific and the application
layer protocol is always a factor to consider both for sensor
nodes and for gateways. Although the application specific
nature of WSN design means that either of the protocols is
best suited for any application, there is often need to
reprogram the device when network conditions change or
device application change for optimal utilization of the
system resources. The hybrid MQTT-CoAP protocol
system will eliminate the need for this reprogramming and
also significantly reduce the time taken to decide which
protocol best suits the application and network conditions.
Therefore, having a hybrid protocol technique will be
invaluable to an engineer looking to optimize data
communication in the network.

401

6 PROPOSED TECHNIQUE FOR HYBRID
MQTT-COAP PROTOCOL

CoAP and MQTT differ in architecture and also as
discussed in the comparison in section 4 above they have
complimentary advantages and disadvantages thus the need
for a technique to combine both protocols.

The flow chart in Figure 4 shows the proposed hybrid
technique. The technique requires the designer to make
resources of their choice available via the CoAP protocol
and other or similar resources available via the MQTT
protocol so the node publishes topics to a broker using the
MQTT protocol and also receives requests and processes
these requests using the CoAP protocol. In this protocol
technique, the observe feature of the CoAP protocol will be
optionally replaced or handled by the MQTT protocol so as
to make the hybrid solution scalable.

Since studies have shown that at lower packet loss rates and
higher delay, MQTT messages have lower delay than
CoAP, a decision algorithm could be developed in the
gateway to instruct nodes to communicate with either of the
protocols depending on the observed network condition
and this is only possible because the hybrid system would
make it possible for both protocols to be used
simultaneously in the node.

7 CONCLUSION

In this study we briefly overviewed the MQTT and
CoAP protocols and made a brief comparison between both
protocols in terms of message size and overhead, power
consumption and resource requirement, bandwidth and
latency, reliability/QoS and Interoperability, security and
provisioning, IoT usage and standardization. This is in
effort to expose the limitations and strong points of the
protocols with a view to hybridizing the complementing
strong points of the protocols. It is anticipated that this
hybrid will produce a better performing protocol system.
We propose a hybrid MQTT-CoAP protocol technique for
data communication not only between gateway and
server/cloud/end user but also between nodes and between
a node and the gateway.

