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Abstract— The ease with which DDoS attack is being 
launched using publicly available tools has made DDoS to be a 
recurring security problem. However, given the immense work 
by researchers to stem the tide of volumetric DDoS, attackers 
have resorted to using a slow DDoS attack which is similar to 
benign traffic thus making detection and mitigation difficult. 
This paper seeks to provide the scholarly community with a 
survey on slow DDoS attack detection techniques worked upon 
by researchers over time. A low amount of work has been done 
when the work on slow DDoS detection is juxtaposed with that 
of volumetric DDoS. However, researchers who have worked 
on detecting slow attacks have achieved remarkable results. 
Machine learning detection technique has proven to be 
effective with random forest and K-Nearest Neighbour (KNN) 
being the major algorithms that have consistently achieved 
good results in terms of Area Under Curve (AUC), accuracy, 
and false positive rate. Other detection techniques of time 
series and performance model have also been effective against 
slow DDoS but need to be improved upon given the non-
linearly separable nature of a slow attack and benign traffic. 
Most researchers resorted to using attack tools to generate 
attack data due to the absence of a standard data set. 
Recommendations for future studies include exploration of 
detecting slow table overflow attacks in SDN before a table 
overflow event occurs. 

Keywords—Slow DDoS, Slowloris, Slow POST, Slow Read, 
Slow attack detection, Slow HTTP 

I INTRODUCTION 

     The threats to devices in a networked environment keeps 
on metamorphosing because of the variety in network 
devices, protocols, and configuration. Among these threats 
is Distributed Denial of Service (DDoS). DDoS attacks 
involve the use of a large number of Internet-enabled and 
connected devices to synchronously send illegitimate 
requests to a target thus overwhelming the target’s capacity 
to respond to the requests [1]. The manipulation of data 
transfer rates which consequently consumes the target's 
resources is one of the strategies used to cause a DDoS. A 
DDoS situation is reached when the attacker maintains 
connections or sends data to the victim which results in the 
unavailability or improper functioning of the services 
offered by the victim to legitimate users. According to [2], 
volumetric and application layers are the major categories of 
DDoS attacks. Volumetric attacks are characterized by large 
data transfer rate launched against the targets which exhaust 
the bandwidth of the target’s links or the memory storage 
and processing power of the target. Unlike volumetric 
attacks structured on the network and transport layers, the 
application layer attacks exploit the behaviour of application 

layer protocols thereby increasing detection difficulty and 
circumventing network and transport layers DDoS detection 
mechanisms. The application layer attacks could employ 
either fast or slow data transfer rate to achieve DDoS. The 
use of slow or low data transfer rate to achieve application 
layer DDoS requires establishing and maintaining 
connections with the victim for prolonged periods hence, 
hindering service availability to legitimate clients. Slow data 
transfer rate DDoS are also known as slow DDoS. 

Slow DDoS attacks are generally application layer attacks 
that exploit application layer protocols of HTTP, FTP, 
IMAP, and SMTP. Unlike volumetric DDoS, it utilizes less 
bandwidth and small computational resource of the attacker 
[2]. The low bandwidth usage characteristic of slow DDoS 
enables it to evade detection because the data transfer rate 
bears semblance with that of either a legitimate user with a 
slow connection or one whose device has low data 
transmission capacity [3]. The attacker occupies most or all 
the service queues at the application level thereby causing 
incoming requests to be discarded [4]. Slow HTTP DDoS, 
an attack against web servers, is the most prominent in this 
category which can be attributed to the vast amount of web 
servers. A slow HTTP DDoS attacker establishes a 
connection with the webserver using the three-way 
handshake protocol after which the connection is maintained 
using a few amount of data [5]. Although it is true in some 
situations that slow DDoS attacks focus on slow data 
transfer rate, it also entails the use of few amount of data 
relative to the bulk of data requested for or being transferred 
to sustain a connection to the victim [4][6]. The advantages 
of the slow DDoS attacks which includes detection evasion, 
low attack resource requirement, and easy configuration 
endears it to DDoS attackers. Also, the ability to launch a 
slow HTTP DDoS attack from a mobile phone has 
compounded the problem of detection and mitigation given 
the wide use of mobile phones for Internet connectivity [7]. 
In general, these DDoS attacks are aimed at targets such as 
OpenFlow switches, web servers, file servers, and mail 
servers. 

II. TYPES OF SLOW ATTACKS 

Classification of slow DDoS attacks is based on either 
the application layer or the device an attack targets. The 
types of slow DDoS attacks with their targets are examined 
in this section. 
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a. Slow HTTP DDoS 

A slow HTTP DDoS is a type of DDoS which exploits 
the way the HTTP protocol on web servers operates 
particularly the lack of time-bound active connection rules 
and the need to wait for the completion of requests [8][9]. 
HTTP is one of the most popular Internet protocols which 
executes on the TCP/IP protocol suite, the backbone of the 
World Wide Web (WWW). Whenever a HTTP request is 
sent to a web server, the request is accompanied with a 
header which contains information such as window size, 
protocol version, and window scaling necessary for the 
webserver to process the request and send the required 
response appropriately [9]. To launch a slow HTTP DDoS 
attack, a normal TCP or UDP connection is first established 
with the victim and then the attacker seeks to maintain every 
connection established by either sending or reading few 
amounts of bytes to or from the webserver. There are three 
types of slow HTTP DDoS: the slow read, the slow POST, 
and the slow GET. To hide the attack origin, the attacker 
may utilize HTTPS as the transport protocol to establish and 
maintain connections [9]. 

Slow Read 
A slow read DDoS attack is aimed at causing the 

unavailability of web services to legitimate clients by 
requesting for data resource from the web server and then 
forcing the victim to send the reply at a low rate [5][10]. 
After establishing a connection with the webserver, the 
attacker requests for a resource while advertising a small 
TCP window. The TCP window defines the number of bytes 
readable by a client. The attacker ensures that the TCP 
window advertised is smaller than the web server’s buffer 
size thus causing delays which fills up the webserver’s buffer 
with responses waiting for dispatch [11]. In some cases, the 
attacker advertises a TCP window size of 0 bytes which 
makes the web server wait indefinitely for the client to be 
available for response receipt, however, timeout mechanisms 
and zero-byte window detection mechanisms implemented 
on the webserver makes the attack easy to detect. Hence, 
attackers may resort to using varying amount of bytes large 
enough to sustain the connection and evade detection 
mechanisms but small enough to cause a DDoS scenario 
[12]. The attacker continues to establish numerous 
connections to the webserver until it has occupied most or all 
of the available connections on the webserver. This ensures 
that there is an increase in the web server’s response time or 
availability of the web service to legitimate clients is none 
existent. The method of operation for a slow read DDoS 
attacker is illustrated in fig. 1. 

Slow POST 
Unlike the slow read attack, the slow POST attack sends 

data to the webserver at a rate that maintains the connections 
established for a long period. The slow POST attack is also 
known as the R-U-Dead-Yet (RUDY) or slow body attack 
relies on sending a HTTP POST request which advertises a 
large content-header value. On receiving the request, the 
target server allocates resources necessary for the completion 
of the data transfer until the connection is completed or 
terminated by the client [11]. Since the webserver waits, as 
long as the connection is active until the specified length of 
data is received, the attacker resorts to sending small 
amounts of data to the server at intervals, regular or random, 
smaller than the timeout value of inactive connections. For 
the attack to be successful, the attacker launches several 

similar connections to the webserver and initiates the same 
data transfer method [13][9]. For instance, an attacker might 
have advertised a content-length of 5 megabytes (MB) for a 
POST request to a web server but sends about 20 to 30 
kilobytes (KB) within the range of 15 to 25 seconds given 
that the timeout value for inactive connections on the 
webserver is 30 seconds. Accordingly, it will take 
approximately 2,500 seconds or 41 minutes per connection 
to complete such a request. Illustrated in fig. 2 is the slow 
POST attack process. 

Slow GET 
Similar to the slow POST attack, the slow GET attack 

also involves sending of data to the target web server. Slow 
GET attacks are also known as a slow header or slowloris 
attacks. A legitimate GET request is sent to the webserver 
after establishing a connection, however, on receiving a 200 
OK message from the server which indicates that the server 
is ready to receive the headers, the attacker splits the header 
into several chunks which are sent at a low rate. In a normal 
scenario, the header consists of two Carriage-Return Line-
Feed (CRLF) characters (“\r\n\r\n”) which signify the end of 
the header and the beginning of the body to the webserver 
thus allowing the webserver to begin processing of the 
request. A single CRLF character signifies the end of a line 
and the beginning of another in the header request [14]. 
However, in an attack scenario, both CRLF characters are 
not transmitted thus causing the victim web server to keep 
the connections open as it waits indefinitely for the 
completion of the header requests [9][15]. The indefinite 
wait of the server causes the dropping of connection requests 
made by legitimate clients because the connection limit of 
the webserver has been reached. Slow GET attack 
description is shown in fig. 3. 

Slow TCAM 
The emergence of Software-Defined Networking (SDN) 

brought about the decoupling of the control and data planes 
into different devices thus allowing for a centralized view of 
the network. The controller of the network resides in the 
control plane as it maintains a unified view of the network 
while the switches reside in the data plane operating as 
packet forwarding devices. The switch maintains a Ternary 
Content Addressable Memory (TCAM) where it stores all 
the flow rules obtained from the controller whenever a new 
flow arrives at the switch. However, the TCAM has its limit 
as it can store rules from 1500 to 3000 flow rule entries [16]. 
A slow TCAM attack sends new flows to a switch thereby 
triggering flow rule requests from the switch and installation 
of the flow rules to the switch by the controller. The flow 
rules are then maintained by sending small amounts of data 
at intervals less than the TCAM inactive flow rule timeout 
value. An attacker seeks to establish numerous flow rules on 
the switch aimed at causing new flows from legitimate traffic 
to be dropped since the TCAM reaches its maximum amount 
of flow rules allowed and the flow rules in the switch are still 
active. This type of slow attack can be made effective 
through the recruitment of a large number of bots that send 
new flows to the switch at a low rate. 
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In fig. 4, the attacker makes an initial connection to a 
web server connected to the target switch in the SDN 
network. The initial network is then sustained by 
transferring data at a rate that evades any flow entry timeout 
mechanism set. Furthermore, the attacker increases the 
number of connections that passes through the switch until it 
exhausts the flow entry capacity of the switch. As illustrated 
in fig. 4, the limit of flow entries in the switch is m unique 
connections whereas the attacker attempts to make n unique 
connections where n is greater than m. This invariably leads 
to a table overflow on the target switch. 

III  DETECTION METHODS 

The detection of slow DDoS attacks is difficult because 
the behaviour of the attack is similar to that of a slow client 
that sends legitimate traffic. Also, since the attacker 
establishes a connection to the webserver by adhering to 
legitimate connection rules in the case of slow HTTP DDoS 
or sends new flows to the SDN switch requesting for a 
resource in the SDN network in the case of slow TCAM, 
attack detection is challenging. Slow DDoS detection 
methods proposed by researchers can be classified into 
machine learning, time series, probability with distance 
metric, and performance models techniques. Detection 
techniques that employ machine learning methods seek to 
predict the class category of a new flow record or packet-
based on previously identified records of benign and attack 
traffic or based on the similarity observed between previous 
traffic. The use of time series is aimed at harnessing the 
function of time progression to detect an attack. The 
possibility of traffic to be an attack traffic is considered 
using probability-based measurements. Similarly, distance-
based measurements compute the possibility of a new traffic 
to be an attack traffic based on the closeness of the features 
of the new traffic to that of a previously established attack 
traffic. Since an attack changes the state and behaviour of a 
web server, performance model technique of attack 
detection calculates the behaviour of the webserver or data 
transfer rate under normal circumstances and seeks to 
identify any behaviour that deviates from the initially 

established behaviour. Table I presents a summary of the 
detection techniques with their strengths and weaknesses. 

b. Machine Learning 

Machine learning techniques of supervised and 
unsupervised learning were used in detecting slow DDoS 
attacks. Machine learning techniques under the supervised 
learning category which makes predictions based on 
previously observed features is the most prominent category 
used in the analysis. 

        The use of 5-NN, Naïve Bayes, multilayer perceptron, 
support vector machines, JRIP, Random forest, C4.5 
decision trees, and logistic regression to detect DoS attacks 
of slow POST and slowloris was evaluated in [13]. The 
learners achieved high Area Under Curve (AUC) which was 
attributed in part to the use of Netflow feature set. The 
highest AUC value of 0.99905 with a class ratio of 50:50 
was recorded in RF and the second highest AUC of 0.99904 
with a class ratio of 65:35 was recorded in RF. Although 
their work showed good detection of slow POST and 
slowloris attacks, they employed the use of a DoS attack 
that originates from a source. Since DoS attacks are easier to 
detect compared to DDoS due to the variation in features 
such as source and destination IP address pair, the work 
charts a path for further research using DDoS. Furthermore, 
the similarity in the way slow POST and slowloris attacks 
are launched might have lent some degree of high detection 
rate to their experiment. However, their work buttresses the 
findings of other researchers about the random forest being 
a good machine learning technique to detect slow and 
volumetric DDoS. Also, 5-NN achieved high detection rate 
compared to other techniques used in their work however, it 
was surpassed by random forest. 

Six classifiers of random forest, KNN, logistic regression, 
SVM, decision trees, and deep neural networks were used in 
[17] to detect slow HTTP attacks. KNN and Decision trees 
achieved high detection rates. KNN had an accuracy of 
99.81%, false positive rate of 0.08%, and false negative of 
1.09% while decision tree achieved an accuracy of 99.87%, 
false positive of 0%, and false negative rate of 0.03% when 

Fig. 1.  Slow Read attack scenario 

Fig. 2. Slow POST attack scenario 
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there was an equal composition of attack and legitimate 
traffic in the dataset. The achievement of KNN strengthens 
the view that KNN, an unsupervised learning algorithm, can 
be used to detect slow attacks. However, the detection time 
of KNN when an unbalanced dataset was used was 61.21 
seconds which means that prompt detection of slow attacks 
when KNN is used is not always guaranteed. 

 Instead of using full packet captures, Netflow features were 
used in [8] with eight classifiers to detect slow read attacks 

in SDN networks. The use of Netflow was attributed to the 
low packet processing overhead associated with Full Packet 
Captures (FPC). The classifiers of random forest, C4.5 N, 5-
Nearest Neighbour, C4.5D, MLP, JRip, SVM, and Naïve 
Bayes achieved an AUC of 96.76%, 96.72%, 96.69%, 
96.62%, 95.06%, 94.71%, 89.22%, and 88.94% 
respectively. 
 

  

 
Fig. 4 Slow TCAM attack scenario 

 
Since high AUC reflects high TPR and low FPR, the 
random forest is seen as the best classifier for detecting slow 
read attacks. Here, random forest classifier proves to be the 
best classifier that detects slow read attacks. 

Detection of slowloris and slow POST attacks in encrypted 
traffic by clustering extracted features and performing 
machine learning detection of anomalies was performed in 
[18]. Machine learning techniques used are single linkage 
clustering, k-means, fuzzy c-means, self-organizing maps, 
and DBSCAN. K-means, fuzzy c-means, and self-
organizing maps achieved high detection rates of 99.9957% 
with detection rate.  
In another work, machine learning techniques to detect 
RUDY attacks using features from bi-directional network 
instances false positive rate of 0.0043% for slowloris 
attacks. Also, K-means, fuzzy c-means, and self-organizing 
maps achieved high detection rates of 99.9931% with false 
positive rate of 0.0043% for slow post attacks. Kmeans, 
another unsupervised learning algorithm, achieves high  
selected using an ensemble feature selection approach 
containing 10 different feature ranker methods aimed at 
extracting the most important features for the detection of 
RUDY attacks at the network level. It was observed that the 
usage of fewer features increases detection time and analysis 
accuracy. SANTA dataset that was obtained from the 
network of a commercial Internet Service Provider (ISP) 
together with the RUDY attack dataset obtained during pen-

testing used in their work. Three classification methods of 
K-Nearest Neighbor (K-NN) where k is five and two forms 
of C4.5 decision trees (C4.5D and C4.5N) were used to 
build the predictive models. The selected features include 
features that represent three main characteristics of traffic 
size, packet similarity, and traffic velocity. When seven 
features were used, results obtained for the AUC metric 
shows that 99.83%, 99.96%, and 99.99% were achieved by 
C4.5N, C4.5D, and 5-NN respectively; for true positive rate, 
99.07%, 98.90%, and 98.97% were achieved by C4.5N, 
C4.5D, and 5-NN respectively; and for  

false positive rate, 0.029%, 0.041%, and 0.0265% were 
achieved by C4.5N, C4.5D, and 5-NN. When all the features 
were used, the AUC metric achieved results of, 99.88%, 
99.40%, and 99.99% by C4.5N, C4.5D, and 5-NN 
respectively; for true positive rate, 98.73%, 98.66%, and 
98.83% were achieved by C4.5N, C4.5D, and 5-NN 
respectively; and for false positive rate, 0.0282%, 0.0307%, 
and 0.0316% were achieved by C4.5N, C4.5D, and 5-NN 
respectively. The higher AUC value means higher TPR and 
lower FPR. 5-NN also achieves a good detection by having 
the highest AUC and the lowest FPR values when seven 
features were selected. The increase in AUC and FPR values 
in 5-NN when all the features were used points the effect of 
large feature usage on the detection rate of 5-NN. Although 
higher AUC was obtained, the corresponding increase in 
false positive rate cannot be substantiated given that the 
clustering algorithm flags a greater amount of legitimate 
traffic as malicious [19]. 

Fig. 3. Slow GET attack scenario 
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    Usage of the random forest algorithm to detect slow read 
attacks in a cloud environment was performed in [12]. Raw 
TCP logs of a slow read attack were analysed and 
preprocessed before passing the data to the random forest 
classifier. The accuracy of the random forest classifier 
increases with an increase in the number of trees however, 
the computational complexity also increases. Pre-pruning of 
the trees has proven to increase the false negative rate to 
50.10% compared to 1.90% when pre-pruning was not used. 
Accuracy of 83.34% was recorded when pre-pruning was 
used compared to 99.37% when pre-pruning was not used. 
However, 0% false positive rate was observed in either case. 
The use of pre-pruning of trees in random forest makes the 
solution not to be developed appropriately through the 
growth of the trees. The absence of pre-pruning sheds more 
light on the reason random forest classifiers have 
consistently shown its suitability in detecting slow attacks. It 
was also noted in their work that increasing the number of 
trees to improve performance gain may not be justified 
when the number of trees reaches a point where the 
computational cost of finding a solution affects the detection 
rate adversely. 

HTTP count and delta time were used in [20] with other 
features to detect slow HTTP attacks using machine learning 
classifiers of naïve bayes, naïve bayes multinomial, 
multilayer perceptron, random forest, logistic regression, 
and radial basis function network. Results obtained indicate 
that naïve bayes multinomial has the best accuracy of 
93.67%, true positive of 91.49%, and false positive of 
3.10% compared to the results obtained for other machine 
learning techniques. 

Detection of slow attacks using machine learning 
techniques has proven that although detection might be 
difficult, it is not impossible. The ability to detect slow 
attacks rely on the correct identification and tweaking of the 
classifier’s parameters. As observed in KNN, using the value 
of K as five gives better result compared to other values of 
K. Also, the use of pre-pruning has been shown to affect 
random forest classification adversely. 

c. Time Series 

Detection of slow POST, header, and read DoS attacks 
based on a nonparametric CUSUM algorithm was 
introduced in [21]. It detects changes in the distribution of 
observed values. 13 different sampling techniques were 
used. Detection rate reduces as the threshold number 
increases. The threshold of 2500 achieved 100% detection 
rate with 0% false alerts. Selective flow sampling achieved 
the highest detection rate when the sampling rate is greater 
than 20%. The result obtained using selective flow sampling 
can be attributed to the selection of small flows for analysis 
rather than large flows. This ensures that the slow attacks 
that generate small flows are easily identified. 

The use of spectral analysis to detect low rate DoS that 
affect Apache 2.2 servers was worked on in [22]. The 
spectral analysis is focused on the distribution of power over 
the frequency of a time series. In their work, a Discrete 
Fourier Transform was used to transform the signal to the 
frequency domain. It was observed that the beginning of an 
attack is more detectable than an ongoing attack using their 
method. Different detectability using different bot wait 
times was noticed as wait times also affect detectability. It 

was observed that detection using spectral analysis was 
possible when the attacker used fixed waiting times or 
floods the server with connection requests when starting the 
attack.  
Time series decomposition that separates the time series into 
random and trend components on which the cumulative sum 
(CUSUM) technique and double autocorrelation technique 
were applied respectively in the work by [23]. Detection 
latency of 32 seconds was recorded with FPR and FNR of 
4.3% and 9.8% respectively. 
Time series method of detecting slow DDoS attacks have 
achieved good detection rate however, it is worthy of note 
that several factors affect the detection rate adversely 
compared to machine learning techniques. 

d. Probabilistic with Distance-based 
Similarity Metric 

Euclidean distance similarity metric was employed to 
detect slow attacks in [24]. The analysis of log files to 
calculate the similarity was used. Another distance 
similarity metric, Hellinger distance, was used in [25] to 
measure the distance between the probability distributions 
of the normal and attack traffic generated. Evasion of the 
detection system is inevitable if an attacker can generate 
packets whose probability distribution is similar to that of 
the normal traffic used as a benchmark. 

Chi-square statistics was also used to detect slow rate 
DoS attacks. Selecting the appropriate threshold and interval 
time proved difficult as an increase in the interval time 
improves recall rate and causes a high false positive rate too 
but a reduction in interval time reduces recall rate and 
improves false positive rate [26]. 
      The use of probability and distance-based similarity 
metric has not proven to be effective in detecting slow 
DDoS attacks yet. It can be attributed to the non-linearity of 
the attack type in contrast with volumetric attacks. 
Volumetric attacks are easily detected because the deviation 
of its features from benign traffic features is immense. The 
dilemma of using probability-based detection is evident in 
[26]. 

e. Performance Model 

Packet inter-arrival time and window size analysis were 
used in [11] to detect slow HTTP DDoS attacks. It was 
identified that the average window size in client to server 
communication for normal traffic, slowloris, RUDY, and 
slow read attack are 34041, 14123, 14034, and 7241 
respectively while in server to client communication the 
average window size recorded was 27022, 6854, 6856, and 
0 respectively. It can be observed that the average values of 
slowloris and RUDY attacks are closer to each other which 
can be attributed to the similarity of their attack. It was also 
recorded that the average packet delta time in client to 
server for normal, slowloris, RUDY, and slow read attacks 
were 302.28, 75.16, 74.123, and 339.28 ms respectively 
while that of the server to the client was 151.12, 0.115, 
0.561, and 28.759 ms. 
A solution to slow HTTP DDoS attacks on OpenStack cloud 
platform was implemented in [15]. A packet pre-monitoring 
module identifies the behaviour of packets and the passes it 
to the classifier zone module. An allowed and blocked list is 
also maintained. All clients are placed in the allowed list 
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until the client violates some conditions. The average 
network delay is calculated by sending 5 pings to the client 
and the average reply response time is calculated by taking 
into account the time the client responds to the ping 
messages. Once the delay between the HTTP requests 
exceeds five times the calculated network delay, the client is 
moved to the block list zone. The five times network delay 
is based on considering the processing time for applications. 
Frequent advertisement of TCP window of zero is 
monitored and placed in the block list. Furthermore, POST 
or GET requests sent to the webserver when 80% of the 
timeout value has elapsed are treated as an attacker and 
placed in the block list. In their work, slow body attacks 
were detected when connection requests reached 1700 while 
slow read attacks were detected when connection requests 
reached 1000. 
Connection threshold that aids in detecting a slow attack in 
an SDN network was examined in [27]. A slow attack is 
detected when an incomplete HTTP request is made when 
the number of open connections on the web server exceeds 
the predetermined threshold number of concurrent 
connections being processed. 
The TABLE FULL message generated in SDN when new 
rules cannot be installed due to a full TCAM was utilized in  
[16] to detect a TCAM attack which in turn activates a 
mitigation mechanism.  
      Reverse proxy was used in [28] to mitigate slowloris 
attack and detect the attack by measuring the stress at the 
server. The reverse proxy handles requests on behalf of the 
original server pending the completion of the request.  
 



 

188 
 

S/N Author 
Detection 
Technique 

Strength and result Weakness 

1 
Calvert and 

Khoshgoftaar [13] 
Machine 
Learning 

The high detection rate of 
99.905% in random forest 

Only DoS was examined 
Only slow header and slow POST were 

examined 
The high computational cost for generating 

trees 

2 Siracusano et al. [17] 
Machine 
Learning 

Decision Tree accuracy of 
99.87% 

A small change in data can cause immense 
change in optimal solutions 

3 Kemp et al.[8] 
Machine 
Learning 

Use Netflow for low packet 
processing overhead 

Random Forest had AUC of 
96.76% 

Only slow read was examined 

4 Zolotukhin et al. [18] 
Machine 
Learning 

K-means achieved a detection 
rate of 99.9931% 

Only slowloris and slow POST were examined 

5 Najafabadi et al.[19] 
Machine 
Learning 

5-NN achieved AUC of 99.99% 
with false positive of 0.0265% 

Only slow POST attack was examined 

6 Shafieian et al.[12] 
Machine 
Learning 

Random  forest without pre-
pruning achieved 99.37% 
accuracy with 1.90% false 

negative, and 0% false positive 

Only slow read was examined 
Tree creation computational cost 

7 Singh and De [20] 
Machine 
Learning 

Naïve Bayes multinomial 
achieved an accuracy of 93.67% 

A high false positive rate of 3.10% was 
recorded 

8 Jazi et al.[21] Time Series 

Selective flow sampling 
achieved the highest detection 

rate of 100% when set to a 
sampling rate greater than 20%. 

High resource consumption due to sampling 
rate 

9 
Brynielsson and 

Sharma [22] 
Time Series 

Detects the beginning of an 
attack 

Attack wait times affected detectability 
The continuation of an attack may not be 

detected 

10 Liu and Kim [23] Time Series 
Average attack detection time of 

32 seconds 
False positive rate of 4.3% and false negative 

rate of 9.8% 

11 Cusack and Tim [24] 

Probability 
with Distance-

based 
Similarity 

Low processing overhead 
Detection of attack after havoc has been 

caused due to the use of log files for analysis 

12 Tripathi et al. [25] 

Probability 
with Distance-

based 
Similarity 

Simple probability distributions 
and Hellinger distances were 

utilized to detect attacks 

Possibility of detection evasion by generating 
attack packets with probabilities close to the 

normal traffic probabilities 

13 
Tripathi and Hubballi 

[26] 

Probability 
with Distance-

based 
Similarity 

0% false positive rate recorded 
for ��  = 5 minutes  

100% recall rate recorded for 
��  = 20 and 25 minutes 

Large ��  increases false positive rate but 
improves recall rate and low ��  reduces recall 

rate but improves the false positive rate 

14 
Muraleedharan and 

Janet [11] 
Performance 

model 

Identification and recording of 
core features that signifies any 

of the slow HTTP attacks 
Only DoS attacks were examined 

15 Idhammad et al. [15] 
Performance 

model 
Effective in identifying slow 

connection masqueraders 

Variable window size and data transfer 
interval small enough to cause DDoS can 

circumvent the detection technique 

16 Hong et al. [27] 
Performance 

model 
Simple to implement 

Difficulty establishing an appropriate 
threshold 

17 Dantas et al. [16] 
Performance 

model 
Ease of implementation 

The attack is detected only after the table 
overflow has occurred 

18 Yeasir et al. [28] 
Performance 

model 

Ease of detection because 
attacks stress the server’s 

resources 
Only slowloris attack was considered 

19 Shtern et al. [29] 
Performance 

model 

Ease of detection by using the 
performance of the webserver to 

identify attacks 

The dilemma of when to establish the 
performance metric to be used for comparison 

TABLE I.  SUMMARY OF SLOW DDOS DETECTION TECHNIQUES 
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The establishment of a performance model using the central 
processing unit (CPU) utilization and time, workload, disk 
utilization and time, waiting time and throughput to form a 
baseline that signifies attack was explored by [29].           
However, the dilemma of when to establish the baseline is 
an obstacle identified in their model. Perhaps, the baseline 
created might have been performed when an attack was 
taking place which makes it difficult to detect subsequent 
attacks easily using that established baseline. 

    Performance-based models of detecting slow DDoS 
attacks have proven to be good in detecting attacks however, 
they are not devoid of issues as evident in [29]. Selecting the 
appropriate threshold has been difficult to perform given the 
dynamic nature of an attack and benign traffic. 

III. DISCUSSION 

     As shown in Table I, machine learning detection 
techniques have proven to be effective and efficient in 
detecting slow DDoS attacks in computer networks. Eight 
works of literature on slow DDoS detection using machine 
learning were examined. Prominent among the supervised 
and unsupervised learning categories are the random forest 
and KNN techniques respectively. However, the 
computational overhead of random forest and the slow 
detection time of KNN in the presence of unbalanced 
datasets are their shortcomings.  

     Performance models and time series techniques of 
detecting slow attacks trail behind machine learning 
techniques as evident in Table I in terms of results achieved 
and an improvement in their approach of detecting DDoS 
attacks is needed. Six performance model technique and 
three time series detection technique were evaluated. The 
advantage these aforementioned techniques have over 
machine learning techniques are their ability to extract 
features easily, perform detection faster, and conserve the 
detection system’s resources because they do not rely on 
external modules to detect attacks.  

     The use of probability with distance-based similarity 
technique has not yielded any remarkable result yet. 
Although three research works were identified, the studies 
either encountered hitches of either possible attack detection 
circumvention or inability to detect the attack appropriately. 
This is due, in part, to the inability to represent slow attack 
traffic using concrete values.  

     All the techniques used in detecting slow DDoS attacks 
as examined in this study have shortcomings however, the 
use of machine learning detection technique offers more 
prospect in detecting attacks than any of the other 
techniques studied. 

IV. CONCLUSION 

         As observed, research into the field of slow DDoS 
attack detection is low compared to that of volumetric 
attacks. This could be attributed to the ease with which 
researchers can perform experiments that detect volumetric 

attacks without resorting to other techniques of feature 
extraction and technologies that may be beyond their scope. 
This lack of adequate research on detecting slow attacks is 
also evident through the absence of standard datasets of 
slow attacks compared to that of volumetric DDoS which 
has CAIDA, NSL-KDD, and DARPA datasets. In the 
absence of the dataset, slow DDoS attack researchers have 
resorted to creating their dataset by simulating the attack 
using tools such as slowHTTPTest, slowloris.py, and 
OWASP switchblade amongst others. 

        For further studies, researchers can develop a standard 
data set for slow attacks and also improve upon performance 
model and time series detection techniques. Also, the 
adjustment of parameters in machine learning techniques 
together with feature selection should be explored. 
Furthermore, studies on slow table overflow attack detection 
and mitigation are needed given that detecting and 
mitigating a table overflow attack after it has wreaked havoc 
is not efficient and proactive. 

       In summary, although some researchers were able to 
demonstrate how slow DDoS attacks can be detected, more 
needs to be done in the field of slow DDoS attack detection 
and mitigation considering its detection difficulty, low 
attack resource usage, and the ability to launch one from a 
mobile phone.  
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