

182

A Survey on Slow DDoS Attack Detection
Techniques

Oluwatobi Shadrach Akanji
Department of Computer Science
Federal University of Technology

Minna, Nigeria
akanjioluwatobishadrach@yahoo

.com

Opeyemi Aderiike Abisoye
Department of Computer Science
Federal University of Technology

Minna, Nigeria
o.abisoye@futminna.edu.ng

Sulaimon A. Bashir
Department of Computer Science
Federal University of Technology

Minna, Nigeria
bashirsulaimon@futminna.edu.ng

Oluwaseun Adeniyi Ojerinde
Department of Computer Science
Federal University of Technology

Minna, Nigeria
o.ojerinde@futminna.edu.ng

Abstract— The ease with which DDoS attack is being
launched using publicly available tools has made DDoS to be a
recurring security problem. However, given the immense work
by researchers to stem the tide of volumetric DDoS, attackers
have resorted to using a slow DDoS attack which is similar to
benign traffic thus making detection and mitigation difficult.
This paper seeks to provide the scholarly community with a
survey on slow DDoS attack detection techniques worked upon
by researchers over time. A low amount of work has been done
when the work on slow DDoS detection is juxtaposed with that
of volumetric DDoS. However, researchers who have worked
on detecting slow attacks have achieved remarkable results.
Machine learning detection technique has proven to be
effective with random forest and K-Nearest Neighbour (KNN)
being the major algorithms that have consistently achieved
good results in terms of Area Under Curve (AUC), accuracy,
and false positive rate. Other detection techniques of time
series and performance model have also been effective against
slow DDoS but need to be improved upon given the non-
linearly separable nature of a slow attack and benign traffic.
Most researchers resorted to using attack tools to generate
attack data due to the absence of a standard data set.
Recommendations for future studies include exploration of
detecting slow table overflow attacks in SDN before a table
overflow event occurs.

Keywords—Slow DDoS, Slowloris, Slow POST, Slow Read,
Slow attack detection, Slow HTTP

I INTRODUCTION

 The threats to devices in a networked environment keeps
on metamorphosing because of the variety in network
devices, protocols, and configuration. Among these threats
is Distributed Denial of Service (DDoS). DDoS attacks
involve the use of a large number of Internet-enabled and
connected devices to synchronously send illegitimate
requests to a target thus overwhelming the target’s capacity
to respond to the requests [1]. The manipulation of data
transfer rates which consequently consumes the target's
resources is one of the strategies used to cause a DDoS. A
DDoS situation is reached when the attacker maintains
connections or sends data to the victim which results in the
unavailability or improper functioning of the services
offered by the victim to legitimate users. According to [2],
volumetric and application layers are the major categories of
DDoS attacks. Volumetric attacks are characterized by large
data transfer rate launched against the targets which exhaust
the bandwidth of the target’s links or the memory storage
and processing power of the target. Unlike volumetric
attacks structured on the network and transport layers, the
application layer attacks exploit the behaviour of application

layer protocols thereby increasing detection difficulty and
circumventing network and transport layers DDoS detection
mechanisms. The application layer attacks could employ
either fast or slow data transfer rate to achieve DDoS. The
use of slow or low data transfer rate to achieve application
layer DDoS requires establishing and maintaining
connections with the victim for prolonged periods hence,
hindering service availability to legitimate clients. Slow data
transfer rate DDoS are also known as slow DDoS.

Slow DDoS attacks are generally application layer attacks
that exploit application layer protocols of HTTP, FTP,
IMAP, and SMTP. Unlike volumetric DDoS, it utilizes less
bandwidth and small computational resource of the attacker
[2]. The low bandwidth usage characteristic of slow DDoS
enables it to evade detection because the data transfer rate
bears semblance with that of either a legitimate user with a
slow connection or one whose device has low data
transmission capacity [3]. The attacker occupies most or all
the service queues at the application level thereby causing
incoming requests to be discarded [4]. Slow HTTP DDoS,
an attack against web servers, is the most prominent in this
category which can be attributed to the vast amount of web
servers. A slow HTTP DDoS attacker establishes a
connection with the webserver using the three-way
handshake protocol after which the connection is maintained
using a few amount of data [5]. Although it is true in some
situations that slow DDoS attacks focus on slow data
transfer rate, it also entails the use of few amount of data
relative to the bulk of data requested for or being transferred
to sustain a connection to the victim [4][6]. The advantages
of the slow DDoS attacks which includes detection evasion,
low attack resource requirement, and easy configuration
endears it to DDoS attackers. Also, the ability to launch a
slow HTTP DDoS attack from a mobile phone has
compounded the problem of detection and mitigation given
the wide use of mobile phones for Internet connectivity [7].
In general, these DDoS attacks are aimed at targets such as
OpenFlow switches, web servers, file servers, and mail
servers.

II. TYPES OF SLOW ATTACKS

Classification of slow DDoS attacks is based on either
the application layer or the device an attack targets. The
types of slow DDoS attacks with their targets are examined
in this section.

183

a. Slow HTTP DDoS

A slow HTTP DDoS is a type of DDoS which exploits
the way the HTTP protocol on web servers operates
particularly the lack of time-bound active connection rules
and the need to wait for the completion of requests [8][9].
HTTP is one of the most popular Internet protocols which
executes on the TCP/IP protocol suite, the backbone of the
World Wide Web (WWW). Whenever a HTTP request is
sent to a web server, the request is accompanied with a
header which contains information such as window size,
protocol version, and window scaling necessary for the
webserver to process the request and send the required
response appropriately [9]. To launch a slow HTTP DDoS
attack, a normal TCP or UDP connection is first established
with the victim and then the attacker seeks to maintain every
connection established by either sending or reading few
amounts of bytes to or from the webserver. There are three
types of slow HTTP DDoS: the slow read, the slow POST,
and the slow GET. To hide the attack origin, the attacker
may utilize HTTPS as the transport protocol to establish and
maintain connections [9].

Slow Read
A slow read DDoS attack is aimed at causing the

unavailability of web services to legitimate clients by
requesting for data resource from the web server and then
forcing the victim to send the reply at a low rate [5][10].
After establishing a connection with the webserver, the
attacker requests for a resource while advertising a small
TCP window. The TCP window defines the number of bytes
readable by a client. The attacker ensures that the TCP
window advertised is smaller than the web server’s buffer
size thus causing delays which fills up the webserver’s buffer
with responses waiting for dispatch [11]. In some cases, the
attacker advertises a TCP window size of 0 bytes which
makes the web server wait indefinitely for the client to be
available for response receipt, however, timeout mechanisms
and zero-byte window detection mechanisms implemented
on the webserver makes the attack easy to detect. Hence,
attackers may resort to using varying amount of bytes large
enough to sustain the connection and evade detection
mechanisms but small enough to cause a DDoS scenario
[12]. The attacker continues to establish numerous
connections to the webserver until it has occupied most or all
of the available connections on the webserver. This ensures
that there is an increase in the web server’s response time or
availability of the web service to legitimate clients is none
existent. The method of operation for a slow read DDoS
attacker is illustrated in fig. 1.

Slow POST
Unlike the slow read attack, the slow POST attack sends

data to the webserver at a rate that maintains the connections
established for a long period. The slow POST attack is also
known as the R-U-Dead-Yet (RUDY) or slow body attack
relies on sending a HTTP POST request which advertises a
large content-header value. On receiving the request, the
target server allocates resources necessary for the completion
of the data transfer until the connection is completed or
terminated by the client [11]. Since the webserver waits, as
long as the connection is active until the specified length of
data is received, the attacker resorts to sending small
amounts of data to the server at intervals, regular or random,
smaller than the timeout value of inactive connections. For
the attack to be successful, the attacker launches several

similar connections to the webserver and initiates the same
data transfer method [13][9]. For instance, an attacker might
have advertised a content-length of 5 megabytes (MB) for a
POST request to a web server but sends about 20 to 30
kilobytes (KB) within the range of 15 to 25 seconds given
that the timeout value for inactive connections on the
webserver is 30 seconds. Accordingly, it will take
approximately 2,500 seconds or 41 minutes per connection
to complete such a request. Illustrated in fig. 2 is the slow
POST attack process.

Slow GET
Similar to the slow POST attack, the slow GET attack

also involves sending of data to the target web server. Slow
GET attacks are also known as a slow header or slowloris
attacks. A legitimate GET request is sent to the webserver
after establishing a connection, however, on receiving a 200
OK message from the server which indicates that the server
is ready to receive the headers, the attacker splits the header
into several chunks which are sent at a low rate. In a normal
scenario, the header consists of two Carriage-Return Line-
Feed (CRLF) characters (“\r\n\r\n”) which signify the end of
the header and the beginning of the body to the webserver
thus allowing the webserver to begin processing of the
request. A single CRLF character signifies the end of a line
and the beginning of another in the header request [14].
However, in an attack scenario, both CRLF characters are
not transmitted thus causing the victim web server to keep
the connections open as it waits indefinitely for the
completion of the header requests [9][15]. The indefinite
wait of the server causes the dropping of connection requests
made by legitimate clients because the connection limit of
the webserver has been reached. Slow GET attack
description is shown in fig. 3.

Slow TCAM
The emergence of Software-Defined Networking (SDN)

brought about the decoupling of the control and data planes
into different devices thus allowing for a centralized view of
the network. The controller of the network resides in the
control plane as it maintains a unified view of the network
while the switches reside in the data plane operating as
packet forwarding devices. The switch maintains a Ternary
Content Addressable Memory (TCAM) where it stores all
the flow rules obtained from the controller whenever a new
flow arrives at the switch. However, the TCAM has its limit
as it can store rules from 1500 to 3000 flow rule entries [16].
A slow TCAM attack sends new flows to a switch thereby
triggering flow rule requests from the switch and installation
of the flow rules to the switch by the controller. The flow
rules are then maintained by sending small amounts of data
at intervals less than the TCAM inactive flow rule timeout
value. An attacker seeks to establish numerous flow rules on
the switch aimed at causing new flows from legitimate traffic
to be dropped since the TCAM reaches its maximum amount
of flow rules allowed and the flow rules in the switch are still
active. This type of slow attack can be made effective
through the recruitment of a large number of bots that send
new flows to the switch at a low rate.

184

In fig. 4, the attacker makes an initial connection to a
web server connected to the target switch in the SDN
network. The initial network is then sustained by
transferring data at a rate that evades any flow entry timeout
mechanism set. Furthermore, the attacker increases the
number of connections that passes through the switch until it
exhausts the flow entry capacity of the switch. As illustrated
in fig. 4, the limit of flow entries in the switch is m unique
connections whereas the attacker attempts to make n unique
connections where n is greater than m. This invariably leads
to a table overflow on the target switch.

III DETECTION METHODS

The detection of slow DDoS attacks is difficult because
the behaviour of the attack is similar to that of a slow client
that sends legitimate traffic. Also, since the attacker
establishes a connection to the webserver by adhering to
legitimate connection rules in the case of slow HTTP DDoS
or sends new flows to the SDN switch requesting for a
resource in the SDN network in the case of slow TCAM,
attack detection is challenging. Slow DDoS detection
methods proposed by researchers can be classified into
machine learning, time series, probability with distance
metric, and performance models techniques. Detection
techniques that employ machine learning methods seek to
predict the class category of a new flow record or packet-
based on previously identified records of benign and attack
traffic or based on the similarity observed between previous
traffic. The use of time series is aimed at harnessing the
function of time progression to detect an attack. The
possibility of traffic to be an attack traffic is considered
using probability-based measurements. Similarly, distance-
based measurements compute the possibility of a new traffic
to be an attack traffic based on the closeness of the features
of the new traffic to that of a previously established attack
traffic. Since an attack changes the state and behaviour of a
web server, performance model technique of attack
detection calculates the behaviour of the webserver or data
transfer rate under normal circumstances and seeks to
identify any behaviour that deviates from the initially

established behaviour. Table I presents a summary of the
detection techniques with their strengths and weaknesses.

b. Machine Learning

Machine learning techniques of supervised and
unsupervised learning were used in detecting slow DDoS
attacks. Machine learning techniques under the supervised
learning category which makes predictions based on
previously observed features is the most prominent category
used in the analysis.

 The use of 5-NN, Naïve Bayes, multilayer perceptron,
support vector machines, JRIP, Random forest, C4.5
decision trees, and logistic regression to detect DoS attacks
of slow POST and slowloris was evaluated in [13]. The
learners achieved high Area Under Curve (AUC) which was
attributed in part to the use of Netflow feature set. The
highest AUC value of 0.99905 with a class ratio of 50:50
was recorded in RF and the second highest AUC of 0.99904
with a class ratio of 65:35 was recorded in RF. Although
their work showed good detection of slow POST and
slowloris attacks, they employed the use of a DoS attack
that originates from a source. Since DoS attacks are easier to
detect compared to DDoS due to the variation in features
such as source and destination IP address pair, the work
charts a path for further research using DDoS. Furthermore,
the similarity in the way slow POST and slowloris attacks
are launched might have lent some degree of high detection
rate to their experiment. However, their work buttresses the
findings of other researchers about the random forest being
a good machine learning technique to detect slow and
volumetric DDoS. Also, 5-NN achieved high detection rate
compared to other techniques used in their work however, it
was surpassed by random forest.

Six classifiers of random forest, KNN, logistic regression,
SVM, decision trees, and deep neural networks were used in
[17] to detect slow HTTP attacks. KNN and Decision trees
achieved high detection rates. KNN had an accuracy of
99.81%, false positive rate of 0.08%, and false negative of
1.09% while decision tree achieved an accuracy of 99.87%,
false positive of 0%, and false negative rate of 0.03% when

Fig. 1. Slow Read attack scenario

Fig. 2. Slow POST attack scenario

185

there was an equal composition of attack and legitimate
traffic in the dataset. The achievement of KNN strengthens
the view that KNN, an unsupervised learning algorithm, can
be used to detect slow attacks. However, the detection time
of KNN when an unbalanced dataset was used was 61.21
seconds which means that prompt detection of slow attacks
when KNN is used is not always guaranteed.

 Instead of using full packet captures, Netflow features were
used in [8] with eight classifiers to detect slow read attacks

in SDN networks. The use of Netflow was attributed to the
low packet processing overhead associated with Full Packet
Captures (FPC). The classifiers of random forest, C4.5 N, 5-
Nearest Neighbour, C4.5D, MLP, JRip, SVM, and Naïve
Bayes achieved an AUC of 96.76%, 96.72%, 96.69%,
96.62%, 95.06%, 94.71%, 89.22%, and 88.94%
respectively.

Fig. 4 Slow TCAM attack scenario

Since high AUC reflects high TPR and low FPR, the
random forest is seen as the best classifier for detecting slow
read attacks. Here, random forest classifier proves to be the
best classifier that detects slow read attacks.

Detection of slowloris and slow POST attacks in encrypted
traffic by clustering extracted features and performing
machine learning detection of anomalies was performed in
[18]. Machine learning techniques used are single linkage
clustering, k-means, fuzzy c-means, self-organizing maps,
and DBSCAN. K-means, fuzzy c-means, and self-
organizing maps achieved high detection rates of 99.9957%
with detection rate.
In another work, machine learning techniques to detect
RUDY attacks using features from bi-directional network
instances false positive rate of 0.0043% for slowloris
attacks. Also, K-means, fuzzy c-means, and self-organizing
maps achieved high detection rates of 99.9931% with false
positive rate of 0.0043% for slow post attacks. Kmeans,
another unsupervised learning algorithm, achieves high
selected using an ensemble feature selection approach
containing 10 different feature ranker methods aimed at
extracting the most important features for the detection of
RUDY attacks at the network level. It was observed that the
usage of fewer features increases detection time and analysis
accuracy. SANTA dataset that was obtained from the
network of a commercial Internet Service Provider (ISP)
together with the RUDY attack dataset obtained during pen-

testing used in their work. Three classification methods of
K-Nearest Neighbor (K-NN) where k is five and two forms
of C4.5 decision trees (C4.5D and C4.5N) were used to
build the predictive models. The selected features include
features that represent three main characteristics of traffic
size, packet similarity, and traffic velocity. When seven
features were used, results obtained for the AUC metric
shows that 99.83%, 99.96%, and 99.99% were achieved by
C4.5N, C4.5D, and 5-NN respectively; for true positive rate,
99.07%, 98.90%, and 98.97% were achieved by C4.5N,
C4.5D, and 5-NN respectively; and for

false positive rate, 0.029%, 0.041%, and 0.0265% were
achieved by C4.5N, C4.5D, and 5-NN. When all the features
were used, the AUC metric achieved results of, 99.88%,
99.40%, and 99.99% by C4.5N, C4.5D, and 5-NN
respectively; for true positive rate, 98.73%, 98.66%, and
98.83% were achieved by C4.5N, C4.5D, and 5-NN
respectively; and for false positive rate, 0.0282%, 0.0307%,
and 0.0316% were achieved by C4.5N, C4.5D, and 5-NN
respectively. The higher AUC value means higher TPR and
lower FPR. 5-NN also achieves a good detection by having
the highest AUC and the lowest FPR values when seven
features were selected. The increase in AUC and FPR values
in 5-NN when all the features were used points the effect of
large feature usage on the detection rate of 5-NN. Although
higher AUC was obtained, the corresponding increase in
false positive rate cannot be substantiated given that the
clustering algorithm flags a greater amount of legitimate
traffic as malicious [19].

Fig. 3. Slow GET attack scenario

186

 Usage of the random forest algorithm to detect slow read
attacks in a cloud environment was performed in [12]. Raw
TCP logs of a slow read attack were analysed and
preprocessed before passing the data to the random forest
classifier. The accuracy of the random forest classifier
increases with an increase in the number of trees however,
the computational complexity also increases. Pre-pruning of
the trees has proven to increase the false negative rate to
50.10% compared to 1.90% when pre-pruning was not used.
Accuracy of 83.34% was recorded when pre-pruning was
used compared to 99.37% when pre-pruning was not used.
However, 0% false positive rate was observed in either case.
The use of pre-pruning of trees in random forest makes the
solution not to be developed appropriately through the
growth of the trees. The absence of pre-pruning sheds more
light on the reason random forest classifiers have
consistently shown its suitability in detecting slow attacks. It
was also noted in their work that increasing the number of
trees to improve performance gain may not be justified
when the number of trees reaches a point where the
computational cost of finding a solution affects the detection
rate adversely.

HTTP count and delta time were used in [20] with other
features to detect slow HTTP attacks using machine learning
classifiers of naïve bayes, naïve bayes multinomial,
multilayer perceptron, random forest, logistic regression,
and radial basis function network. Results obtained indicate
that naïve bayes multinomial has the best accuracy of
93.67%, true positive of 91.49%, and false positive of
3.10% compared to the results obtained for other machine
learning techniques.

Detection of slow attacks using machine learning
techniques has proven that although detection might be
difficult, it is not impossible. The ability to detect slow
attacks rely on the correct identification and tweaking of the
classifier’s parameters. As observed in KNN, using the value
of K as five gives better result compared to other values of
K. Also, the use of pre-pruning has been shown to affect
random forest classification adversely.

c. Time Series

Detection of slow POST, header, and read DoS attacks
based on a nonparametric CUSUM algorithm was
introduced in [21]. It detects changes in the distribution of
observed values. 13 different sampling techniques were
used. Detection rate reduces as the threshold number
increases. The threshold of 2500 achieved 100% detection
rate with 0% false alerts. Selective flow sampling achieved
the highest detection rate when the sampling rate is greater
than 20%. The result obtained using selective flow sampling
can be attributed to the selection of small flows for analysis
rather than large flows. This ensures that the slow attacks
that generate small flows are easily identified.

The use of spectral analysis to detect low rate DoS that
affect Apache 2.2 servers was worked on in [22]. The
spectral analysis is focused on the distribution of power over
the frequency of a time series. In their work, a Discrete
Fourier Transform was used to transform the signal to the
frequency domain. It was observed that the beginning of an
attack is more detectable than an ongoing attack using their
method. Different detectability using different bot wait
times was noticed as wait times also affect detectability. It

was observed that detection using spectral analysis was
possible when the attacker used fixed waiting times or
floods the server with connection requests when starting the
attack.
Time series decomposition that separates the time series into
random and trend components on which the cumulative sum
(CUSUM) technique and double autocorrelation technique
were applied respectively in the work by [23]. Detection
latency of 32 seconds was recorded with FPR and FNR of
4.3% and 9.8% respectively.
Time series method of detecting slow DDoS attacks have
achieved good detection rate however, it is worthy of note
that several factors affect the detection rate adversely
compared to machine learning techniques.

d. Probabilistic with Distance-based
Similarity Metric

Euclidean distance similarity metric was employed to
detect slow attacks in [24]. The analysis of log files to
calculate the similarity was used. Another distance
similarity metric, Hellinger distance, was used in [25] to
measure the distance between the probability distributions
of the normal and attack traffic generated. Evasion of the
detection system is inevitable if an attacker can generate
packets whose probability distribution is similar to that of
the normal traffic used as a benchmark.

Chi-square statistics was also used to detect slow rate
DoS attacks. Selecting the appropriate threshold and interval
time proved difficult as an increase in the interval time
improves recall rate and causes a high false positive rate too
but a reduction in interval time reduces recall rate and
improves false positive rate [26].
 The use of probability and distance-based similarity
metric has not proven to be effective in detecting slow
DDoS attacks yet. It can be attributed to the non-linearity of
the attack type in contrast with volumetric attacks.
Volumetric attacks are easily detected because the deviation
of its features from benign traffic features is immense. The
dilemma of using probability-based detection is evident in
[26].

e. Performance Model

Packet inter-arrival time and window size analysis were
used in [11] to detect slow HTTP DDoS attacks. It was
identified that the average window size in client to server
communication for normal traffic, slowloris, RUDY, and
slow read attack are 34041, 14123, 14034, and 7241
respectively while in server to client communication the
average window size recorded was 27022, 6854, 6856, and
0 respectively. It can be observed that the average values of
slowloris and RUDY attacks are closer to each other which
can be attributed to the similarity of their attack. It was also
recorded that the average packet delta time in client to
server for normal, slowloris, RUDY, and slow read attacks
were 302.28, 75.16, 74.123, and 339.28 ms respectively
while that of the server to the client was 151.12, 0.115,
0.561, and 28.759 ms.
A solution to slow HTTP DDoS attacks on OpenStack cloud
platform was implemented in [15]. A packet pre-monitoring
module identifies the behaviour of packets and the passes it
to the classifier zone module. An allowed and blocked list is
also maintained. All clients are placed in the allowed list

187

until the client violates some conditions. The average
network delay is calculated by sending 5 pings to the client
and the average reply response time is calculated by taking
into account the time the client responds to the ping
messages. Once the delay between the HTTP requests
exceeds five times the calculated network delay, the client is
moved to the block list zone. The five times network delay
is based on considering the processing time for applications.
Frequent advertisement of TCP window of zero is
monitored and placed in the block list. Furthermore, POST
or GET requests sent to the webserver when 80% of the
timeout value has elapsed are treated as an attacker and
placed in the block list. In their work, slow body attacks
were detected when connection requests reached 1700 while
slow read attacks were detected when connection requests
reached 1000.
Connection threshold that aids in detecting a slow attack in
an SDN network was examined in [27]. A slow attack is
detected when an incomplete HTTP request is made when
the number of open connections on the web server exceeds
the predetermined threshold number of concurrent
connections being processed.
The TABLE FULL message generated in SDN when new
rules cannot be installed due to a full TCAM was utilized in
[16] to detect a TCAM attack which in turn activates a
mitigation mechanism.
 Reverse proxy was used in [28] to mitigate slowloris
attack and detect the attack by measuring the stress at the
server. The reverse proxy handles requests on behalf of the
original server pending the completion of the request.

188

S/N Author
Detection
Technique

Strength and result Weakness

1
Calvert and

Khoshgoftaar [13]
Machine
Learning

The high detection rate of
99.905% in random forest

Only DoS was examined
Only slow header and slow POST were

examined
The high computational cost for generating

trees

2 Siracusano et al. [17]
Machine
Learning

Decision Tree accuracy of
99.87%

A small change in data can cause immense
change in optimal solutions

3 Kemp et al.[8]
Machine
Learning

Use Netflow for low packet
processing overhead

Random Forest had AUC of
96.76%

Only slow read was examined

4 Zolotukhin et al. [18]
Machine
Learning

K-means achieved a detection
rate of 99.9931%

Only slowloris and slow POST were examined

5 Najafabadi et al.[19]
Machine
Learning

5-NN achieved AUC of 99.99%
with false positive of 0.0265%

Only slow POST attack was examined

6 Shafieian et al.[12]
Machine
Learning

Random forest without pre-
pruning achieved 99.37%
accuracy with 1.90% false

negative, and 0% false positive

Only slow read was examined
Tree creation computational cost

7 Singh and De [20]
Machine
Learning

Naïve Bayes multinomial
achieved an accuracy of 93.67%

A high false positive rate of 3.10% was
recorded

8 Jazi et al.[21] Time Series

Selective flow sampling
achieved the highest detection

rate of 100% when set to a
sampling rate greater than 20%.

High resource consumption due to sampling
rate

9
Brynielsson and

Sharma [22]
Time Series

Detects the beginning of an
attack

Attack wait times affected detectability
The continuation of an attack may not be

detected

10 Liu and Kim [23] Time Series
Average attack detection time of

32 seconds
False positive rate of 4.3% and false negative

rate of 9.8%

11 Cusack and Tim [24]

Probability
with Distance-

based
Similarity

Low processing overhead
Detection of attack after havoc has been

caused due to the use of log files for analysis

12 Tripathi et al. [25]

Probability
with Distance-

based
Similarity

Simple probability distributions
and Hellinger distances were

utilized to detect attacks

Possibility of detection evasion by generating
attack packets with probabilities close to the

normal traffic probabilities

13
Tripathi and Hubballi

[26]

Probability
with Distance-

based
Similarity

0% false positive rate recorded
for �� = 5 minutes

100% recall rate recorded for
�� = 20 and 25 minutes

Large �� increases false positive rate but
improves recall rate and low �� reduces recall

rate but improves the false positive rate

14
Muraleedharan and

Janet [11]
Performance

model

Identification and recording of
core features that signifies any

of the slow HTTP attacks
Only DoS attacks were examined

15 Idhammad et al. [15]
Performance

model
Effective in identifying slow

connection masqueraders

Variable window size and data transfer
interval small enough to cause DDoS can

circumvent the detection technique

16 Hong et al. [27]
Performance

model
Simple to implement

Difficulty establishing an appropriate
threshold

17 Dantas et al. [16]
Performance

model
Ease of implementation

The attack is detected only after the table
overflow has occurred

18 Yeasir et al. [28]
Performance

model

Ease of detection because
attacks stress the server’s

resources
Only slowloris attack was considered

19 Shtern et al. [29]
Performance

model

Ease of detection by using the
performance of the webserver to

identify attacks

The dilemma of when to establish the
performance metric to be used for comparison

TABLE I. SUMMARY OF SLOW DDOS DETECTION TECHNIQUES

3rd International Conference on Information Technology in Education and Development ITED200743

The establishment of a performance model using the central
processing unit (CPU) utilization and time, workload, disk
utilization and time, waiting time and throughput to form a
baseline that signifies attack was explored by [29].
However, the dilemma of when to establish the baseline is
an obstacle identified in their model. Perhaps, the baseline
created might have been performed when an attack was
taking place which makes it difficult to detect subsequent
attacks easily using that established baseline.

 Performance-based models of detecting slow DDoS
attacks have proven to be good in detecting attacks however,
they are not devoid of issues as evident in [29]. Selecting the
appropriate threshold has been difficult to perform given the
dynamic nature of an attack and benign traffic.

III. DISCUSSION

 As shown in Table I, machine learning detection
techniques have proven to be effective and efficient in
detecting slow DDoS attacks in computer networks. Eight
works of literature on slow DDoS detection using machine
learning were examined. Prominent among the supervised
and unsupervised learning categories are the random forest
and KNN techniques respectively. However, the
computational overhead of random forest and the slow
detection time of KNN in the presence of unbalanced
datasets are their shortcomings.

 Performance models and time series techniques of
detecting slow attacks trail behind machine learning
techniques as evident in Table I in terms of results achieved
and an improvement in their approach of detecting DDoS
attacks is needed. Six performance model technique and
three time series detection technique were evaluated. The
advantage these aforementioned techniques have over
machine learning techniques are their ability to extract
features easily, perform detection faster, and conserve the
detection system’s resources because they do not rely on
external modules to detect attacks.

 The use of probability with distance-based similarity
technique has not yielded any remarkable result yet.
Although three research works were identified, the studies
either encountered hitches of either possible attack detection
circumvention or inability to detect the attack appropriately.
This is due, in part, to the inability to represent slow attack
traffic using concrete values.

 All the techniques used in detecting slow DDoS attacks
as examined in this study have shortcomings however, the
use of machine learning detection technique offers more
prospect in detecting attacks than any of the other
techniques studied.

IV. CONCLUSION

 As observed, research into the field of slow DDoS
attack detection is low compared to that of volumetric
attacks. This could be attributed to the ease with which
researchers can perform experiments that detect volumetric

attacks without resorting to other techniques of feature
extraction and technologies that may be beyond their scope.
This lack of adequate research on detecting slow attacks is
also evident through the absence of standard datasets of
slow attacks compared to that of volumetric DDoS which
has CAIDA, NSL-KDD, and DARPA datasets. In the
absence of the dataset, slow DDoS attack researchers have
resorted to creating their dataset by simulating the attack
using tools such as slowHTTPTest, slowloris.py, and
OWASP switchblade amongst others.

 For further studies, researchers can develop a standard
data set for slow attacks and also improve upon performance
model and time series detection techniques. Also, the
adjustment of parameters in machine learning techniques
together with feature selection should be explored.
Furthermore, studies on slow table overflow attack detection
and mitigation are needed given that detecting and
mitigating a table overflow attack after it has wreaked havoc
is not efficient and proactive.

 In summary, although some researchers were able to
demonstrate how slow DDoS attacks can be detected, more
needs to be done in the field of slow DDoS attack detection
and mitigation considering its detection difficulty, low
attack resource usage, and the ability to launch one from a
mobile phone.

REFERENCES

[1] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes,
“SOFTWARE-DEFINED NETWORKING SECURITY�:
PROS AND CONS,” no. June, pp. 73–79, 2015.

[2] R. Swami, M. Dave, and V. Ranga, “Software-defined
Networking-based DDoS Defense Mechanisms,” ACM
Comput. Surv., vol. 52, no. 2, p. 36, 2019.

[3] J. Boite, P. A. Nardin, F. Rebecchi, M. Bouet, and V.
Conan, “Statesec: Stateful monitoring for DDoS
protection in software defined networks,” in 2017 IEEE
Conference on Network Softwarization: Softwarization
Sustaining a Hyper-Connected World: en Route to 5G,
NetSoft 2017, 2017.

[4] E. Cambiaso, G. Papaleo, G. Chiola, and M. Aiello, “Slow
DoS attacks: definition and categorisation,” Int. J. Trust
Manag. Comput. Commun., vol. 1, no. 3/4, p. 300, 2013.

[5] J. Park, “Analysis of Slow Read DoS Attack and
Countermeasures on Web servers,” Int. J. Cyber-Security
Digit. Forensics, vol. 4, no. 2, pp. 339–353, 2015.

[6] E. Cambiaso, G. Papaleo, and M. Aiello, “Slowcomm:
Design, development and performance evaluation of a
new slow DoS attack,” J. Inf. Secur. Appl., vol. 35, pp.
23–31, 2017.

[7] P. Farina, E. Cambiaso, G. Papaleo, and M. Aiello,
“Understanding DDoS Attacks From Mobile Devices,”
2015.

[8] C. Kemp, C. Calvert, and T. M. Khoshgoftaar, “Utilizing
netflow data to detect slow read attacks,” in Proceedings -
2018 IEEE 19th International Conference on Information
Reuse and Integration for Data Science, IRI 2018, 2018,
pp. 108–116.

[9] S. Suroto, “A Review of Defense Against Slow HTTP
Attack,” JOIV Int. J. Informatics Vis., vol. 1, no. 4, p.

190

127, 2017.
[10] D. Ameyed, F. Jaafar, and J. Fattahi, “A slow read attack

using cloud,” in Proceedings of the 2015 7th International
Conference on Electronics, Computers and Artificial
Intelligence, ECAI 2015, 2015, pp. SSS33–SSS38.

[11] N. Muraleedharan and B. Janet, “Behaviour analysis of
HTTP based slow denial of service attack,” in
Proceedings of the 2017 International Conference on
Wireless Communications, Signal Processing and
Networking, WiSPNET 2017, 2018, vol. 2018-Janua, pp.
1851–1856.

[12] S. Shafieian, M. Zulkernine, and A. Haque,
“CloudZombie: Launching and detecting slow-read
distributed denial of service attacks from the Cloud,” in
Proceedings - 15th IEEE International Conference on
Computer and Information Technology, CIT 2015, 14th
IEEE International Conference on Ubiquitous Computing
and Communications, IUCC 2015, 13th IEEE
International Conference on Dependable, Autonomic and
Se, 2015, pp. 1733–1740.

[13] C. L. Calvert and T. M. Khoshgoftaar, “Impact of class
distribution on the detection of slow HTTP DoS attacks
using Big Data,” J. Big Data, 2019.

[14] O. Yevsieieva and S. M. Helalat, “Analysis of the Impact
of the Slow HTTP DoS and DDoS Attacks on the Cloud
Environment,” p. 5, 2017.

[15] M. Idhammad, K. Afdel, and M. Belouch, “Detection
System of HTTP DDoS Attacks in a Cloud Environment
Based on Information Theoretic Entropy and Random
Forest,” Secur. Commun. Networks, vol. 2018, 2018.

[16] Y. G. Dantas, I. E. Fonseca, and V. Nigam, “Slow TCAM
Exhaustion DDoS Attack,” vol. 1, pp. 17–31, 2017.

[17] M. Siracusano, S. Shiaeles, and B. Ghita, “Detection of
LDDoS Attacks Based on TCP Connection Parameters,”
in Global Information Infrastructure and Networking
Symposium, 2018.

[18] M. Zolotukhin, T. Hamalainen, T. Kokkonen, and J.
Siltanen, “Increasing web service availability by detecting
application-layer DDoS attacks in encrypted traffic,” in
2016 23rd International Conference on
Telecommunications, ICT 2016, 2016.

[19] M. M. Najafabadi, T. M. Khoshgoftaar, A. Napolitano,
and C. Wheelus, “RUDY attack: Detection at the network
level and its important features,” in Proceedings of the
29th International Florida Artificial Intelligence Research
Society Conference, FLAIRS 2016, 2016, pp. 282–287.

[20] K. J. Singh and T. De, Emerging Research in Computing,
Information, Communication and Applications. 2015.

[21] H. H. Jazi, H. Gonzalez, N. Stakhanova, and A. A.
Ghorbani, “Detecting HTTP-based application layer DoS
attacks on web servers in the presence of sampling,”
Comput. Networks, vol. 121, pp. 25–36, 2017.

[22] J. Brynielsson and R. Sharma, “Detectability of low-rate
HTTP server DoS attacks using spectral analysis,” in
Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and
Mining, ASONAM 2015, 2015, pp. 954–961.

[23] H. Liu and M. S. Kim, “Real-time detection of stealthy
DDoS attacks using time-series decomposition,” in IEEE
International Conference on Communications, 2010.

[24] B. Cusack and Z. Tian, “Detecting and tracing slow
attacks on mobile phone user service,” in Proceedings of
the 14th Australian Digital Forensics Conference, ADF
2016, 2016, no. December, pp. 4–10.

[25] N. Tripathi, N. Hubballi, and Y. Singh, “How Secure are
Web Servers? An empirical study of Slow HTTP DoS
attacks and detection,” in Proceedings - 2016 11th
International Conference on Availability, Reliability and
Security, ARES 2016, 2016, pp. 454–463.

[26] N. Tripathi and N. Hubballi, “Slow rate denial of service
attacks against HTTP/2 and detection,” Comput. Secur.,
vol. 72, pp. 255–272, 2018.

[27] K. Hong, Y. Kim, H. Choi, and J. Park, “SDN-Assisted
Slow HTTP DDoS Attack Defense Method,” IEEE
Commun. Lett., vol. 22, no. 4, pp. 688–691, 2018.

[28] M. Yeasir, M. Morshed, and M. Fakrul, “A Practical
Approach and Mitigation Techniques on Application
Layer DDoS Attack in Web Server,” Int. J. Comput.
Appl., vol. 131, no. 1, pp. 13–20, 2015.

[29] M. Shtern, R. Sandel, M. Litoiu, C. Bachalo, and V.
Theodorou, “Towards mitigation of low and slow
application DDoS attacks,” in Proceedings - 2014 IEEE
International Conference on Cloud Engineering, IC2E
2014, 2014, no. Vm, pp. 604–609.

