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Abstract: Automatic anomaly detection monitoring plays a vital role in water utilities’ distribution
systems to reduce the risk posed by unclean water to consumers. One of the major problems with
anomaly detection is imbalanced datasets. Dynamic selection techniques combined with ensem-
ble models have proven to be effective for imbalanced datasets classification tasks. In this paper,
water quality anomaly detection is formulated as a classification problem in the presences of class
imbalance. To tackle this problem, considering the asymmetry dataset distribution between the
majority and minority classes, the performance of sixteen previously proposed single and static
ensemble classification methods embedded with resampling strategies are first optimised and com-
pared. After that, six dynamic selection techniques, namely, Modified Class Rank (Rank), Local Class
Accuracy (LCA), Overall-Local Accuracy (OLA), K-Nearest Oracles Eliminate (KNORA-E), K-Nearest
Oracles Union (KNORA-U) and Meta-Learning for Dynamic Ensemble Selection (META-DES) in
combination with homogeneous and heterogeneous ensemble models and three SMOTE-based
resampling algorithms (SMOTE, SMOTE+ENN and SMOTE+Tomek Links), and one missing data
method (missForest) are proposed and evaluated. A binary real-world drinking-water quality
anomaly detection dataset is utilised to evaluate the models. The experimental results obtained
reveal all the models benefitting from the combined optimisation of both the classifiers and re-
sampling methods. Considering the three performance measures (balanced accuracy, F-score and
G-mean), the result also shows that the dynamic classifier selection (DCS) techniques, in particu-
lar, the missForest+SMOTE+RANK and missForest+SMOTE+OLA models based on homogeneous
ensemble-bagging with decision tree as the base classifier, exhibited better performances in terms
of balanced accuracy and G-mean, while the Bg+mF+SMENN+LCA model based on homoge-
neous ensemble-bagging with random forest has a better overall F1-measure in comparison to the
other models.

Keywords: classification; imbalance learning; dynamic selection; missing data; anomaly detection;
water quality

1. Introduction

Access to clean and safe drinking water is vital to human life. It is therefore imperative
that water is suitable for drinking and other uses. Most medical-related experts agree that
most public health epidemics have their source in poor water quality. These are categorised
into four: waterborne, water-based, water-related and water-scarce diseases [1]. Therefore,
water of good quality and easy access must be provided to the public as it leads to a
reduced burden on health care facilities, which directly impacts the economy and national
security of nations [2].
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Furthermore, in today’s volatile socio-political atmosphere, water quality anomaly
event detection has become critical to national security and public health [2], hence there is
a greater need to detect anomalies, deter and prevent both intentional and unintentional
sabotage that may compromise the water quality distribution systems [3]. Owing to the
massive amount of data currently generated by water utilities and the water industry’s
impact on citizens’ lives, there is a need to implement better water quality monitoring and
prediction methods based on new and advanced technologies, specifically for this study,
new and effective machine learning, and data mining techniques [4]. Anomaly detection in
drinking-water quality is a classification problem that seeks to predict a minority class of
interest of an event in an imbalanced class distribution scenario with an overwhelming
number of the majority class examples. The challenge of learning in the presence of imbal-
anced data is further complicated if the dataset has missing data or noise. The existence of
missing data is a common occurrence in either wireless sensor-generated data caused by
faulty measuring sensors or data corrupted in transit. In this study, our aim is the optimisa-
tion of learning algorithms for imbalanced class distribution in the water quality anomaly
detection (WQAD) classification problem. Imbalance class distribution and missing values
in data are prevalent and challenging problems in numerous domains, including in WQAD,
resulting in performance degradation when using traditional machine learning algorithms.
This is because these traditional learning algorithms assume completeness of data and
balanced class distribution. In recent times, numerous machine learning methods have
been proposed in literature ranging from single classifiers, such as support vector machine
(SVM), Logistic Regression, and bagging or boosting ensemble approaches, combined with
resampling and cost-sensitive preprocessing methods [5].

Dynamic selection systems have recently gained considerable research attention due
to their better performance and advantage in learning imbalance data, especially for small-
sized or ill-defined datasets classification tasks, compared to the traditional single machine
learning and static ensemble selection systems [6]. The two dynamic selection approaches
in Multiple Classifier Systems (MCS) research realms are the Dynamic Classifier Selection
(DCS), which selects the most competent single classifier, and the Dynamic Ensemble
Selection (DES), which selects the most optimal ensemble of classifiers to predict each
test sample [7,8]. Dynamic selection (DS) refers to a process where the base classifier or
estimator, usually a single classifier belonging to a pool of classifiers, is selected dynamically
to predict the new specific test sample’s label to be classified [9]. The composition of
DS changes each time new and different test examples are introduced to the system for
prediction or classification. This is based on the intuition that in a pool of classifiers,
each base classifier has its competence in classifying new unknown test samples for the
different local region of competence according to certain selection criteria such as accuracy
or ranking in the given feature space. A base classifier is a term that refers to a single
classifier belonging to an ensemble or a pool of classifiers [10].

As reported in [8], the majority of DS systems are heavily dependent on the k-Nearest
Neighbor (k-NN) algorithm that is necessary for defining the region of competence (RoC).
This limits the performance of these DS methods on improving the k-NN algorithm during
the RoC definition. Nevertheless, the DS approaches are reported in the research literature
to improve the performance of traditional static boosting and bagging-based methods. This
has informed the rise of researchers employing DS techniques combined with ensemble-
based approaches [9,11]. For the imbalanced dataset problem, there is a consensus in
several research papers that noise and the degree of class overlapping are the main culprits
in performance degradation in learning classifiers, as against purely class imbalance. In
nearly all DS strategies, k-NN is used in estimating the competence of base classifier in RoC
using a set of labelled instances referred to as DSEL. Meanwhile, Wilson’s Edited Nearest
Neighbor (ENN) technique [12] is reported in the literature to considerably improve the
performance of the k-NN algorithm [8,13].

Furthermore, while most DS techniques use only one selection criterion for measuring
the competence level (expertise) of base classifiers, this has a limiting performance effect on
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the DS schemes in estimating the level of competence of base classifiers and, by extension,
affecting the overall performance of DS methods. This is because of the probability of
not selecting the most competent base classifier for a test instance in a given classification
problem using a single competency selection criterion. Contrary, as an exception, to the DS
methods that use single competency selection criteria is the newly proposed Meta-learning
for Dynamic Ensemble Selection (META-DES) technique that uses several different crite-
ria to estimate the competence level of base classifiers, thus increasing the likelihood of
improving the classification performance in DES. More so, META-DES and its variants
are reported in the literature to outperform other DS techniques evaluated in numerous
scenarios [10]. The idea fronted in this paper is that the hybrid SMOTE+Edited Nearest
Neighbor (SMOTE+ENN) data resampling method at the pool generation stage could indi-
rectly mitigate ambiguity to the learning classifier by removing noisy and class overlapping
instances for a clear-cut decision boundary and passed onto the DSEL for an improved
DS selection phase. At the same time, the multiple criteria provided by the META-DES
algorithm for estimating the base classifier’s competence level would most likely improve
classification performance. Hence, the advantages that the combined SMOTE+ENN with
META-DES method bring give us a reason that it would lead to improved performance of
DS schemes. The experimental outcome is observed in Section 4 compared to the SMOTE
and SMOTE+Tomek’s Links (SMOTE+TL) resampling methods.

Symmetry is a concept embedded in many physical and biological objects in the
environment. Hence, to improve the predictive performance of learning algorithms in the
presence of imbalanced datasets with missing values, incorporating, adapting and building
symmetry in machine learning and artificial intelligence in pattern recognition tasks is
currently emerging as an important research niche because of the proven advantages it
provides. Specifically, the concept of symmetry-adapted machine learning in water quality
anomaly detection transforms data to extract and analyse hidden patterns to enable the
detection of new anomalies. Which, in general, mitigates complexity in data processing,
reduces the training and future detection times.

Our experimental investigation is, therefore, the combination of one missing data
method, three SMOTE-based resampling methods (SMOTE, SMOTE+ENN and SMOTE+TL)
combined with six DS techniques using bagging-based ensemble with either decision tree
or random tree as the base classifiers, in addition to experimenting using the heterogeneous
voting classifier approach. This allows us to comprehensively observe the behaviour of the
combination of these methods on the WQAD dataset. This study extends the earlier work
in [14] and largely inspired by the other promising results obtained in [6], [11] using DS
techniques on several relatively smaller benchmark imbalanced datasets. The conclusion
drawn from the research study in [9] suggested a link between DS techniques’ performance
and the inherent aspects of the classification difficulty related to the data complexity. This
finding motivates this study to empirically investigate the suitability of DS for the current
WQAD dataset classification problem from the perspective of data complexity measure.

To this end, the following research questions are posed:

1. What is the level of classification complexity of the imbalanced WQAD dataset in
comparison to other imbalanced datasets?

2. Are dynamic selection approaches suitable for imbalanced WQAD classification task?
3. Do dynamic selection techniques improve the classification performance of the

WQAD dataset problem in comparison to static classifiers or static ensemble methods,
or both?

Consequently, this study’s hypothesis is formulated that it is possible to improve the
performance of ensemble-based approaches on imbalanced WQAD classification problems
using dynamic selection techniques combined with missing data and resampling methods.
Hence, the following highlights the contributions of this study:

• To investigate several solutions for the classification of imbalanced real-world drinking-
water quality anomaly detection task.
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• To analyse the complexity of a large WQAD dataset and the suitability of applying
dynamic selection approaches to this dataset.

• To improve and evaluate the performances of six dynamic selection techniques com-
bined with ensemble learning models and one missing data, and three SMOTE-based
resampling approaches to tackle the WQAD problem.

The rest of the paper is organised as follows: Section 2 provides an overview of this
study’s main concepts and related works. Section 3 describes the experimental research
approach and framework. The experimental results, discussions on key findings, and
statistical test and comparison of models are presented in Section 4. Section 5 presents
a conclusion on the study, while Section 6 highlights the limitations and future research
directions of this study.

2. Literature Review
2.1. Overview of Background Concepts

This paper is comprised of five main concepts: (1) Data imputation, (2) Imbalance
learning, (3) Generation of the pool of classifiers, (4) Dynamic selection of classifiers, and
(5) Data complexity measures. This section presents an overview of these key concepts and
related works in WQAD tasks.

2.1.1. Data Imputation Method

A missing data method is a form of data cleaning technique for handling incomplete
values or records or observations, usually anticipated to be in a dataset with some esti-
mated values, rather than leaving them empty. Various strategies for handling missing
data have been proposed in the literature; they include using statistical, machine learning,
model-based using maximum likelihood with expectation-maximisation, and ensemble
approaches [15]. Missing data strategies are broadly categorised into four: (1) Case deletion
(filling with a suitable value, or ignoring data with missing data, or deleting or dropping
missing data); (2) imputation strategies (mean, median, multiple imputation and machine
learning such as k-NN; (3) model-based imputation strategies (maximum-likelihood with
EM algorithm); and (4) machine learning-based strategies (ensemble and tree-based ap-
proaches) [15]. The presence of missing data in an imbalanced dataset adds complexity
to the classification problem; hence, the need to be addressed during the data preprocess-
ing phase. The non-parametric random forest-based imputation method (missForest) is
considered in this study for handling missing data. The consideration is based on results
obtained in the recent work in [14].

2.1.2. Imbalance Learning

In this study, the WQAD task is formulated as an imbalanced class distribution
problem. This is because of the occurrence of the minority class that is poorly represented
in the data space compared to the majority class representing the class of interest. The
resampling methods aim to transform the dataset distribution to address the class labels’
imbalanced nature and mitigate its effect during the learning process [16]. Methods for
dealing with class imbalance problems are broadly categorised into four [5,17]:

1. Data level method: This method addresses the class imbalance problem by modifying
the class distribution during preprocessing. Techniques that performs these class
modifications are collectively referred to as resampling algorithms. The resampling
techniques are broadly categorised into four: (1) over-sampling the minority class, (2)
under-sampling the majority class, (3) hybrid combination of under-sampling used in
conjunction with over-sampling methods and (4) ensemble-based approach [16].

2. Algorithm level method: This approach adapts learning algorithms to handle the
class imbalance distribution. The approach is achieved by internally modifying the
learning algorithms to handle such a problem.

3. Cost-sensitive method: This approach considers the misclassification cost associated
with the minority and majority class instances in an algorithm’s learning process. For
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instance, because the minority class is usually the class of interest, a high misclassifi-
cation cost is assigned to the minority class during the learning process to underscore
its importance, thereby weakening in the process the majority class.

4. Ensemble-based methods: This approach combines data-level, cost-sensitive or
algorithm-level approaches during preprocessing using an ensemble-based learning
algorithm.

SMOTE [18] and two of its hybrid variants: SMOTE+TL and SMOTE+ENN [19] are the
selected resampling methods investigated in this work. In the first, SMOTE oversamples
the minority class by creating new synthetic minority class instances through interpolating
between several of these instances laying together; Tomek link cleans the SMOTE over-
sampled training set by removing both the majority and minority class instances that form
Tomek links and that are considered as noise or borderline instances from the already
balanced dataset. SMOTE+ENN is similar to SMOTE+TL, where SMOTE also balances the
dataset by oversampling the minority class, then followed by the data cleaning process
performed by Wilson’s Edited Nearest Neighbor Rule (ENN) [12]. The ENN removes
any instances of either the majority or minority class that differs from at least two of
its three nearest neighbors. In both approaches, the aim is to provide a better-defined
decision boundary and class clusters by removing data instances deem to be noise or in the
overlapping region, thereby minimising learning ambiguity for the classifier. Generally,
as shown in literature, SMOTE+ENN does a deeper cleaning than SMOTE+Tomek, hence
is normally expected to provide a better well-defined class cluster than SMOTE+TL [19]
in most dataset problems. Therefore, the choice of the two resampling techniques is
considered based on the assertion in several research papers that noise and the degree of
class overlapping are the main culprits in performance degradation in learning classifiers,
as against purely class imbalance. Moreover, all the DS techniques investigated in this study
use k-NN for the competence of region definition, and the ENN technique is reported in
the literature to improve the performance of the k-NN [13] considerably. SMOTE technique
is included in the evaluation to serve as a baseline for the other two hybrid variants.

2.1.3. Pool Generation of Classifiers

A Multiple Classifier System (MCS) comprises three phases: pool generation, selection,
and integration, as shown in Figure 1. The pool generation phase 1 involves generating
a pool of diverse and accurate classifiers. The pool diversity is achieved through either a
homogeneous ensemble pool using either bagging, boosting or hybrid schemes or a het-
erogeneous ensemble pool of different base classifiers [9]. In the selection phase (phase 2),
a single or a set of multiple classifiers from the pool is selected. In the final phase 3, the
selected classifier (DCS) or classifiers (DES) predictions are integrated for the final decision.
In certain scenarios, such as when the whole classifier pool in phase 1 is used, the selection
phase becomes unnecessary. When just a single classifier is selected, the integration phase,
this time around, becomes unnecessary. A static ensemble approach is usually used to
integrate the final decision of the generated pool of classifiers [9]. This paper focuses on
phase 1 and 2, on homogeneous and heterogeneous pool generation schemes and the
DS strategies.

2.1.4. Dynamic Selection

Dynamic selection (DS) is a technique given a test example that allows the selection
of a single or more than one base classifiers from a pool using their competency levels
(expert or best classifier) and a competence measure to form the ensemble [11]. This is
based on the intuition that each base classifier is an expert for the different local region in
the feature search space. DS’s goal is to determine a group of classifiers in a pool having
the best classifiers for a classification problem when presented with different test instances.
On the contrary, in a static ensemble, all the base classifiers are pooled together each time
during the training phase for a given test example regardless of each base classifier’s
competence. Theoretical and empirical research studies have shown dynamic selection
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improved performance over static selection strategies [20]. In DS, a three-step process
helps in defining the specific ensemble of classifiers (EoC); they are (1) definition of region
of competence, (2) competence of classifiers estimation and (3) the classifier(s) selection
approach. This paper favours the ensemble-bagging pool generation approach due to
its popularity and following on the recent work by [10]. This current study combines
data imputation and resampling methods with a dynamic selection approach. Dynamic
selection strategies are grouped into dynamic classifier selection (DCS) and dynamic
ensemble selection (DES).
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DCS selects a single classifier during the pool generation phase, while the DES ap-
proach selects an ensemble of classifiers based on their competence to classify a test instance.
In this study, three DCS strategies, namely Modified Classifier Rank (Rank), which measure
the competence of classifiers based on ranking, Local Class Accuracy (LCA) and Overall
Local Accuracy (OLA), both measures the competence of classifier using on accuracy in
the local region of the feature space, are considered [9]. For DES techniques, two k-nearest
oracle information-based strategies, namely KNORA-Eliminate (KNORA-E) and KNORA-
Union (KNORA-U) [21], and one meta-classifier strategy (META-DES) [10] are considered.
Both KNORA-E and KNORA-U are Oracle-based methods, as the methods use the concept
of linear random oracle [22], while META-DES uses meta-classifier as a competency estima-
tor. The summary of the six dynamic selection strategies is listed in Table 1. The techniques
are selected based on their reported improved performances from studies in [9–11,23].

Table 1. Summary of dynamic selection methods tested.

# DS Strategy Competence
Region Definition

Selection
Criteria Selection Strategy

1. Modified Class Rank (Rank) K-NN Ranking DCS
2. Local Class Accuracy (LCA) K-NN Accuracy DCS
3 Overall-Local Accuracy (OLA) K-NN Accuracy DCS

4. K-Nearest Oracles Eliminate
(KNORA-E) K-NN Oracle DES

5. K-Nearest Oracles Union
(KNORA-U) K-NN Oracle DES

6. Meta-Learning for Dynamic
Ensemble Selection (META-DES) K-NN Meta-learning DES

The six strategies are briefly described as obtained from [9,24]. Figure 2 depicts the
three steps in the DS approach. The dynamic selection dataset (DSEL) is either the training
or validation set, while xq is the query examples that are used to defines the region of
competence (RoC) of θq query example. C is the pool of classifiers with M size, δ is
the vector that estimates competences of each base classifier ci in C. C′ is the final EoC,
depending on the DS strategy of either one base classifier in DCS or more than one base
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classifiers in DEC schemes. The vector δ is used to define EoC that will be used to label
query examples xq.
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• Modified Class Rank (Rank) [9,25] is a method that is based on the ranks of individual
classifiers in the pool for any particle test instance. The classifier’s rank is an estimated
measure of its local accuracy assigned to a class label by a classifier within a neigh-
bourhood of each test instance, which has been correctly labelled. The classifier with
the highest local accuracy is the highest-ranked and the most competent, and is thus
selected for the classification problem.

• Local Class Accuracy (LCA) [9,25] is a strategy that estimates each classifier’s accuracy
in a local region within a given test instance concerning some output class. The
classifier that predicts the correct class label in the local region is adjourned most
competent and is selected to classify the test instance.

• In Overall Local Accuracy (OLA) strategy [9,25], selects the most competent base
classifier using the calculated accuracy in the entire RoC as the competence level
criterion measure, with the classifier obtaining the highest accuracy selected as the
most competent classifier for the given test instance. Rank works similarly to OLA.
The only difference is that weight is assigned to each instance belonging to the region
of competence with the Euclidean distance to the query instance.

The dynamic ensemble selection (DES) method selects from a pool of classifiers an
ensemble of classifiers based on their competence to classify a test instance. The competence
level of classifiers is estimated over each test instance’s nearest neighbors, based on certain
criterion. The two DS techniques are briefly described as follows:

• KNORA-E [9,21] considers and selects a competent classifier based on the oracle
concept if the classifier attains a perfect accuracy for all test instances over the whole
region of competence. Only the classifiers that attain an excellent accuracy are finally
selected and combined using a voting system. It is possible not to have a classifier that
attains a perfect accuracy; in that case, the RoC is reduced, and the process of selection
repeated by re-evaluating the classifiers.

• KNORA-U [9,21] method measures the level of competence of a base classifier based
on the number of correctly classified instances in the defined region of competence. In
KNORA-U, every classifier that classifies at least one instance correctly belonging to
the query instance in the Roc has a voting right. The votes obtained by each selected
base classifier, which is equal to the correctly predicted labels in the RoC, are combined
to form the final ensemble.

• META-DES [10] is a framework that formulates the dynamic ensemble selection
problem as a meta-problem, whereby a meta-classifier works as a classifier selector.
The algorithm uses a set of multiple different criteria regarding the base classifier’s
ci, behaviour (as against a single criterion) to determine whether ci is competent
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enough or not, to label the query test sample xq. The META-DES is defined in the
following steps:

Step 1: The meta-classes are either competent–1 or incompetent 0 to classify xq.
Step 2: Each set of meta-features fi corresponds to multiple criteria for measuring

a base classifier’s level of competence, which are measures of different characteristics
behaviour about the base classifier.

Step 3: The meta-features are encoded into a meta-features vector vi,q.
Step 4: A meta-classifier λ is trained based on the meta-features vi,q to estimate

whether or not ci will achieve the correct prediction xq. In other words, it determines if
the ci is competent enough to classify the test sample query xq. In the end, the competent
classifiers are selected from the pool for performing the classification using a majority
voting mechanism.

2.1.5. Data Complexity Measure

Dynamic selection methods’ choice and performance are attributable to the dataset
classification problem’s complexity [9]. The complexity measures define three charac-
teristics of the dataset, namely, geometric and topology, class overlapping of individual
feature values and boundary distributions between classes [26]. Furthermore, the study
in [9] concludes that more than just the dataset sample size, its number of features and
classes; the inherent and unique characteristic of a dataset play a more crucial role in the
performance of dynamic selection methods in relationship with the dataset complexity.
Meanwhile, the authors in [27] argue that data complexity has a performance impact on
optimising class-imbalanced classification problems when using combined resampling
and learning classifier. Considering all these arguments, this paper is inspired to assess
the complexity of the WQAD dataset used in this study and the appropriateness and
suitability of applying the dynamic selection (DS) approach to this dataset. The dataset’s
complexity is evaluated by analysing eight different complexity measures for the imbal-
ance binary classification problem previously examined in these two studies [26,28]. As
also pointed out in [26,28], combining these eight different measures would more likely
provide insightful information regarding our dataset’s complexity. The nine complexity
measures are six feature-based measures (Maximum Fisher’s Discriminant Ratio (F1), the
Directional-vector Maximum Fisher’s Discriminant Ratio (F1v), Volume of Overlapping
Region (F2), Maximum Individual Feature Efficiency (F3), Collective Feature Efficiency (F4)
and Average number of features per dimension (T2)); one neighbourhood-based measure
(the error rate of 1NN classifier (N3)); and two dimensionality-based measures, (Average
number of PCA dimensions per points (T3) and Ratio of the PCA Dimension to the Original
Dimension (T4)). These classification complexity measures are briefly described next as
obtained in [26,28].

1. Maximum Fisher’s Discriminant Ratio (F1) is a measure that computes the overlap
between feature values and the different classes, and it is defined in Equation (1) as:

Fisher score ratio = f =
(µ1T − µ2F)

2

σ2
1T + σ2

2F
(1)

where, µ1T and µ2F are the means, and σ2
1T and σ2

2F are the variances of class1 (True)
and class2 (False) in that feature dimension. A high F1 value indicates a weak overlap
between classes and represents a lower complexity and easier classification problem.
F1 is in the range of [≈0 to 1].

2. The Directional-vector Maximum Fisher’s Discriminant Ratio (F1v) is a measure that
complements F1 by considering a directional Fisher criterion and is defined as given
in Equation (2):

F1v =
1

1 + dF
(2)



Symmetry 2021, 13, 818 9 of 33

where, directional Fisher criterion is given as dF = dtBd
dtWd

, d is the directional vector
that allows for maximum class separation, B is the scatter matrix between-class, and
W is a scatter matrix within-class. A lower F1v score indicates a simpler classification
problem.

3. The volume of Overlapping Region (F2) computes the range of normalised minimum
and maximum overlapping intervals of distribution of features values within classes.
F2 is defined as in Equation (3):

F2 =
m

∏
i

overlap(fi)

range(fi)
=

m

∏
i

max{0, minmax(fi)−maxmin(fi)}
maxmax(fi)−minmin(fi)

(3)

F2 may yield a negative value for non-overlapping feature ranges. The lower the
F2 value, the lower the classes’ overlap, indicating a less complex classification
problem.

4. Maximum Individual Feature Efficiency (F3) estimates each feature’s individualised
efficiency in separate classes. F3 is express as given in Equation (4) for m features:

F3 = min
i=1

no(fi)

n
(4)

no(fi) =
n

∑
j=1

I
(
xji > maxmin(fi )̂xji < minmax(fi)

)
where, no(fi) computes the number of examples in the region of overlap for fi feature, while
I is indicator function (I = 1 when argument is true; I = 0 when argument is false). The
values maxmin(fi) and minmax(fi) are the maximum and minimum values of each
feature in a class cj ∈ {1, 2}, respectively. A low value of F3 indicates a non-complex
classification problem.

5. Collective Feature Efficiency (F4) is a measure that gives insight into how the features
interact together by considering and selecting features one after another, which shows
a lesser overlap between classes via a process through the entire dataset. After that,
F4 computes the ratio of examples that remained and overlapped between classes.
F4 is expressed as in Equation (5):

F4 =
no(fmin(Tl))

n
(5)

where, no(fmin(Ti)) compute the number of points in the overlapping region of the
feature fmin for the dataset from l− th the round (Tl). Lower values of F4 indicate a
non-complex classification problem.

6. The error rate of the 1NN classifier (N3) computes the estimated error rate of the
k-nearest neighbour classifier based on the proximity of the opposite classes’ points
using a Leave-One-Out (L-O-O) cross-validation estimation scheme. N3 is defined as
in Equation (6):

N3 =
∑n

i=1 I(NN(xi) 6= yi)

n
(6)

where, NN(xi) is the k-nearest neighbour classifier’s prediction for a test instance xi,
using all the other instances as the training set and repeated n times with n different
training set and n different test set, where n is the total number of instances in
the dataset. However, because of our WQAD dataset’s size, its imbalanced class
distribution, and the associated computational cost of using L-O-O scheme on a large
dataset, an equivalent estimate of N3 using 10-fold stratified cross-validation (CV) is
instead computed relying on the empirical evidence in [29]. Moreover, in stratified CV,
each fold has approximately the same proportion of class labels leading to a relatively
better bias and variance. A lower N3 value suggests an easier classification problem,
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based on the indication that many instances are far from instances of other classes.
N3 is in the range of [0 to 1].

7. The average number of features per dimension (T2) is a measure that divides the
number of instances (n) in the dataset by the number of features (m) representing
their dimensionality. T2 takes an inverse form and is expressed as in Equation (7):

T2 =
m
n

(7)

T2 can assume arbitrarily large or small values and sometimes even takes negative
values when the number of instances is highly more than the number of features in a
dataset. Higher T2 indicates an easier classification problem.

8. The average number of PCA dimensions per points (T3) assess data sparsity and is the
principal component analysis (PCA) of the dataset representing the number of PCA
components covering 95% of the data variability (m′). Smaller values of T3 indicates
a simpler classification problem. T3 is defined in Equation (8) as:

T3 =
m′

n
(8)

9. The ratio of the PCA Dimension to the Original Dimension (T4) indicates an ap-
proximate estimate of the proportion of relevant dimension of the dataset, measured
based on PCA criterion. A smaller T4 value indicates a less complex problem. T4 is
expressed in Equation (9) as:

T4 =
m′

m
(9)

2.2. Related Works

Several works on WQAD using machine learning and statistical analysis approaches
have been published over the years, as captured in the review work in [4]. However, this
paper will focus mostly on contributions of a few recently published works in an industrial
competition for drinking-water quality anomaly detection [30], utilising the same real-
world drinking-water quality anomaly detection dataset examined in this current study.
This approach ensures a fair comparison.

A study using various tree-based ensemble approaches is investigated in [31]; the
study observed that the gradient boosting methods are more particularly able to overcome
imbalanced time series data and multicollinearity with satisfactory predictive performance.
Several machine learning and deep learning models to deal with anomaly in water quality
based on time series data are examined, namely, logistic regression (LR), linear discriminant
analysis, SVMs, artificial neural network (ANN), deep neural network (DNN), recurrent
neural network (RNN) and long short-term memory (LSTM). In comparison to the LR
model, SVM exhibits better performance and SVM, ANN and LR are less susceptible
to the imbalanced dataset when compared to the DNN, RNN and LSTM deep learning
models [32]. Multi-objective machine learning optimisation is used for feature selection,
and ensemble generation is proposed in [33] to solve online anomaly detection of drinking-
water quality based on time series. When tested on the validation test set, the proposed
model could generalise well on future test set predictions. Furthermore, two ensemble
learning models for dealing with imbalanced dataset are proposed, namely SMOTEBoost
and RUSBoost using oversampling and undersampling techniques [34]. Finally, multi-
objective pruning on the base models for the ensembles applied to optimise the prediction
and generalisation performance. In a recent related and relevant study, two models are
proposed: adaptive learning rate backpropagation (BP) neural network (ALBP) and 2-
step isolation and random forest (2sIRF), to predict water quality based on physical and
biological indicators in an urban water supply scenario [35]. Their result shows that
2sIRF showed a higher prediction accuracy and considers the risk distribution within the
supply system. In a latest similar work, the study proposed a RUSBoost-based dynamic
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multi-criteria ensemble selection mechanism, considering to better cope with the trade-off
between false positives, which would lead to financial losses to water utilities, and false
negatives, which would have critical and negative implications to public health, national
security and the environment in drinking-water quality anomaly detection monitoring
systems [23]. The study reports a 15% improvement of the proposed model over other
ensemble learning and dynamic selection methods in terms of F1-scores.

It is noticed that most of these works focused on specific missing data and imbalanced
class methods in dealing with the challenges in this domain. In most of these works,
the models’ evaluation is mainly based on the balanced training or validation test, since
as a rule, the preprocessing methods are only applied to the training set. However, the
models’ performance results obtained on the imbalanced test set (unseen dataset) are
usually different from those obtained based on the balanced training set.

In notable recent related works in imbalanced classification using DS, five variants of
resampling methods, namely, SMOTE, Random Balance and Random Minority Oversam-
pling (RAMO) techniques in combination with four DS methods (RANK, LCA, KNORA-U
and KNORA-E) across several imbalanced dataset problems are considered [11], with
dynamic ensemble reported to improving the F-measure and G-mean and higher ranks
considering different levels of imbalance in comparison with the other static ensemble
methods. Similarly, the effectiveness of DS strategies for imbalance classification task has
also been investigated in [8–10] across several benchmark datasets. However, all these
studies used relatively smaller dataset sizes (instances) than the WQAD dataset used in
this paper.

The majority of recent works in WQAD apply modifications to non-ensemble and
ensemble classifiers in combination with resampling methods as the widely adopted ap-
proach. Although it has been demonstrated that DS approaches are effective for imbalanced
classification, the performance by coupling of missing data and class imbalance methods
with dynamic selection techniques to the best of our knowledge has been rarely considered
or explored in the WQAD domain problem with a relatively larger dataset, as inferred
in the studies in [6]. Besides this, no study extensively investigates the suitability of DS
approaches to real-world WQAD problem, except in [23], where the authors’ proposed
a RUSBoost-based DES mechanism to address balancing multiple conflicting criteria to
achieve a better trade-off between false positives and false negatives in two-class classifica-
tion problems. The proposed model was then compared to other DS methods.

3. Materials and Methods

This section presents the experimental setup followed in this study. The different
experiments conducted and the framework used is first outlined. Then a summary is given
of the main dataset characteristics, the hyperparameter tuning of the methods investigated
and the performance measures evaluated.

3.1. Experimental Setup

The experiments were performed in a Python environment using DESLib-Dynamic
Ensemble Learning Library in Python [20] and other sci-kit-learn libraries. This paper
aims to combine missing data and resampling methods with dynamic selection approaches
to observe the effects this combination has on anomaly detection in the drinking-water
quality classification problem. The MV and resampling methods considered in this paper
were selected based on an earlier study in [14]. Firstly, sixteen most used state-of-art non-
ensemble and static ensemble algorithms in the WQAD research domain are considered
and optimised to investigate if their performances could be improved. This experiment is
reported as experiment 1, and their results are reported in Section 4.

The three resampling methods were optimised based on the hyperparameters tuning
using grid-search strategy.

Table 2 summarises all the ensemble-based models evaluated in this study. They com-
prise a combination of one missing data (missForest), three resampling methods (SMOTE,
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SMOTE+ENN and SMOTE+TL) and six dynamic selection, considering homogenous and
heterogeneous ensemble schemes. For the homogeneous ensemble scheme, the bagging-
based method is used, while for the heterogeneous ensemble scheme, the voting classifier
is used. Two optimised base classifiers were investigated for the homogeneous ensemble
experiments, namely decision tree and random forest reported in experiment 2. For experi-
ment 2, two scenarios are considered. First, a combination of the optimised pool of base
classifiers and the resampling methods using the default settings. In the second scenario,
combining the optimised pool of base classifiers and the optimised resampling methods
was considered. The parameter settings for the resampling and dynamic selection methods
are adopted from the studies in [11,24]. Meanwhile for the heterogeneous ensemble, the
scheme was composed of three different optimised pools of classifiers, namely k-NN,
random forest and decision tree reported in experiment 3.

Table 2. Summary of the models evaluated in the experiments.

S/N Ensemble Method Description

Homogeneous (Base Classifier=dt and rf) and Heterogeneous (k-nn, rf, dt)–(voting classifier)

1. Bg+mF+SM Bagging + missForest + SMOTE (Without DS method)
2. Bg+mF+SM+RANK Bagging + missForest + SMOTE+ Modified Class Rank
3. Bg+mF+SM+LCA Bagging + missForest + SMOTE + Local Classifier Accuracy
4. Bg+mF+SM+OLA Bagging + missForest + SMOTE + Overall Local Accuracy
5. Bg+mF+SM+KNE Bagging + missForest + SMOTE + K-Nearest Oracles Eliminate
6. Bg+mF+SM+KNU Bagging + missForest + SMOTE + K-Nearest Oracles Union
7. Bg+mF+SM+META Bagging + missForest + SMOTE + META-DES
8. Bg+mF+SMENN Bagging + missForest + SMOTE-ENN (Without DS method)
9. Bg+mF+SMENN+RANK Bagging + missForest + SMOTE-ENN + Modified Class Rank

10. Bg+mF+SMENN+LCA Bagging + missForest + SMOTE-ENN + Local Classifier Accuracy
11. Bg+mF+SMENN+OLA Bagging + missForest + SMOTE + ENN Overall Local Accuracy
12. Bg+mF+SMENN+KNE Bagging + missForest + SMOTE-ENN + K-Nearest Oracles Eliminate
13. Bg+mF+SMENN+KNU Bagging + missForest + SMOTE-ENN + K-Nearest Oracles Union
14. Bg+mF+SMENN+META Bagging + missForest + SMOTE-ENN META-DES
15. Bg+mF+SMTL Bagging + missForest + SMOTE-Tomek Links
16. Bg+mF+SMTL+RANK Bagging + missForest + SMOTE-Tomek Links + Modified Rank
17. Bg+mF+SMTL+LCA Bagging + missForest + SMOTE-Tomek Links + Local classifier accuracy
18. Bg+mF+SMTL+OLA Bagging + missForest + SMOTE –Tomek Links + Overall Local Accuracy
19. Bg+mF+SMTL+KNE Bagging + missForest + SMOTE-Tomek Links + K-Nearest Oracles Eliminate
20. Bg+mF+SMTL+KNU Bagging + missForest + SMOTE-Tomek Links + K-Nearest Oracles Union
21. Bg+mF+SMTL+META Bagging + missForest + SMOTE-Tomek Links + META-DES
22. Vg+mF+SM+RANK VotingClassifier + missForest + SMOTE+ Modified Class Rank
23. Vg+mF+SM+LCA VotingClassifier + missForest + SMOTE + Local Classifier Accuracy
24. Vg+mF+SM+OLA VotingClassifier + missForest + SMOTE + Overall Local Accuracy
25. Vg+mF+SM+KNE VotingClassifier + missForest + SMOTE + K-Nearest Oracles Eliminate
26. Vg+mF+SM+KNU VotingClassifier + missForest + SMOTE + K-Nearest Oracles Union
27. Vg+mF+SM+META VotingClassifier + missForest + SMOTE + META-DES
28. Vg+mF+SMENN+RANK VotingClassifier + missForest + SMOTE-ENN + Modified Class Rank
29. Vg+mF+SMENN+LCA VotingClassifier + missForest + SMOTE-ENN + Local Classifier Accuracy
30. Vg+mF+SMENN+OLA VotingClassifier + missForest + SMOTE + ENN Overall Local Accuracy
31. Vg+mF+SMENN+KNE VotingClassifier + missForest + SMOTE-ENN + K-Nearest Oracles Eliminate
32. Vg+mF+SMENN+KNU VotingClassifier + missForest + SMOTE-ENN + K-Nearest Oracles Union
33. Vg+mF+SMENN+META VotingClassifier + missForest + SMOTE-ENN META-DES
34. Vg+mF+SMTL+RANK VotingClassifier + missForest + SMOTE-Tomek + Modified Rank
35. Vg+mF+SMTL+LCA VotingClassifier + missForest + SMOTE-Tomek Link + Local classifier accuracy
36. Vg+mF+SMTL+OLA VotingClassifier + missForest + SMOTE –Tomek Link + Overall Local Accuracy
37. Vg+mF+SMTL+KNE VotingClassifier + missForest + SMOTE-Tomek Link + K-Nearest Oracles Eliminate
38. Vg+mF+SMTL+KNU VotingClassifier + missForest + SMOTE-Tomek Link + K-Nearest Oracles Union
39. Vg+mF+SMTL+META VotingClassifier + missForest + SMOTE-Tomek Link + META-DES

The pool size for all homogeneous ensemble schemes was set at 100. A further test by
increasing the pool size to 200 for the two base estimators did not improve the learning
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performance. The three resampling methods were optimised based on the hyperparameters
as listed in Section 3. Lastly, for all the DS methods, the k-nearest neighbours’ parameter
was set to k = 7 (the default configuration). The k parameter value is used in defining the
size of the region of competence, which influences the overall performance of DS strategies.
Even though three other k-nearest neighbours’ values (k = 3, 5 and 9) were tested, it did
not yield improved performance.

For the missing data method and each of the three resampling methods, 39 vari-
ations of models were produced, composed of six ensemble-based dynamic selection
strategies. For example, Bg+mF+SMENN+META is the combined variant of miss Forest,
SMOTE+ENN resampling and META-DES DS methods using bagging based ensemble,
while Vg+mF+SMTL+META is the combined variant of missForest, SMOTE+TL resampling
and META-DES DS methods in a heterogeneous based ensemble using voting classifier
scheme. All the ensemble-based models used in this study are described in Table 2. Five
performance measures were used to evaluate the models’ performances, namely, balanced
accuracy, precision, recall, F-measure and G-mean. Figure 3 shows the experimental frame-
work used in training and testing the DS models investigated in this paper, similar to the
framework used in [11]. The approach in Figure 3 involves applying the preprocessing
techniques: data normalisation to rescale each feature into a range of [0,1] on the training
and tests to avoid dominance of one feature over another, and (missing data and resam-
pling methods) on the training set only. The modified (resampled) dataset is used to train
the ensemble (homogeneous and heterogeneous) and the DS approach, in addition to
generating the DSEL. The preprocessed training set was split into two halves, one-half for
training the base classifiers and the other half DSEL for DS. This decision was possible
since there was enough training dataset size. The randomised characteristics introduced
by the preprocessing methods into the DSEL ensured it was different from the training set,
hence avoiding possible data leak that would lead to overfitting. During testing, the DS
methods used the DSEL to derive the RoC for a given test instance, and then the set-aside
test data is used to evaluate the selected DS strategy (DCS or DES).

3.2. Dataset

The dataset used in this study was obtained from GECCO 2018 challenge [30], sourced
from Thüringer Fernwasserversorgung, a German public water utility company. The dataset
is time-series and made up of ten independent variables and one dependent variable.
The characteristic of the dataset is summarised in Tables 3 and 4. All the features have
missing null values except the “Time” and “EVENT” features. The assumption is that
the dataset is missing completely at random (MCAR), which implies that the probability
of the data missing is the same for all observations, that is, there is no relationship with
other data present or missing that make an observation more likely to be missing. More
so, it is observed that the missing data are all within a certain time range on inspection
of the dataset. The goal of the dataset is a classification problem intended for drinking-
water quality anomaly detection, to predict if there is an event or not. The “EVENT” is
the dependent variable that is to be predicted as either False or True. The training and
test dataset attributes are summarised in Table 3. The majority of the data belongs to
False majority class-0, compared to the True minority class-1. The data was collected
continuously for over 98 days between 03/08/2016 and 13/02/2017 at an interval of 60 s in
between readings.

The dataset’s time series variable was not included in this current study for two rea-
sons. Firstly, the water quality anomaly detection problem is formulated as a classification
of an imbalanced class distribution task and explores the suitability of using dynamic
selection techniques for this task. Secondly, the time series analysis on this dataset has been
extensively addressed in previous studies such as in [23,31,32].
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Table 3. Summary of dataset training and test sets characteristics.

Dataset Instances Majority
Class

Minority
Class Features Class Missing

Values
Imbalance Ratio

(Majority/Minority)

Training set 139566 137840 1726 10 2 1044 79.86
Test set 139566 137237 2329 10 2 24480 58.93
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Table 4. Dataset features description.

# Features Data Type Unit Description

1. Time Categorical dd/mm/yyyy
HH:MM:SS Date and Timestamp

2. Tp Numerical Degree Celsius (◦C) Water temperature
3. Cl_1 Numerical mg/L (MS1) Amount of chlorine dioxide in the water of valve 1
4. pH Numerical pH pH value
5. Redox Numerical mV Redox potential
6. Leit Numerical µS/cm Electrical conductivity (EC)
7. Trueb Numerical NTU Turbidity
8. Cl_2 Numerical mg/L (MS2) Amount of chlorine dioxide in the water of valve 2
9. Fm_1 Numerical m3/h Flow Rate at valve 1
10. Fm_2 Numerical m3/h Flow Rate at valve 2
11. EVENT Boolean Binary (Event) Boolean anomaly label (0 or 1)

MissForest was the missing data method used in this study and applied on the training
and test sets, which was selected based on the analysis conducted in a recent study in [14].
The imbalance ratio (IR) is computed as the ratio of the majority class examples to the
minority class examples. The IR grouping and categorisation is adopted as suggested
in [24]. A low imbalanced dataset is considered to have IR < 3, a medium imbalanced
dataset has IR that lies between 3 and 9 (both inclusive), and a high imbalanced dataset has
IR > 9. Hence, this dataset has a high IR value (train set = 79.86, test set = 58.93).

3.3. Hyperparameter Tuning and Optimisation

The grid-search strategy is used to find each selected classifier’s best hyperparameter
values using F1-measure as the performance measure criteria using 5-fold cross-validation.
The tuning is performed on the balanced training set using SMOTE-ENN. The hyperpa-
rameter values tuned for the different learning algorithms are summarised in Table 5.

Table 5. Hyperparameter values tuning of methods evaluated using grid-search strategy.

# Method Hyperparameter Values Tuned

1. k-nearest neighbor n_neighbors = [3,5,10,15,20]; metric = [‘minkowski’, ‘manhattan’, weights = [‘uniform’,
‘distance’]

2. Support vector machine kernel = [‘linear’ ‘poly’, ‘rbf’, ‘sigmoid’]; C = [1.0, 0.5, 0.1, 0.01]; gamma = [‘scale’] and
class_weight = [‘balance’, ‘None’]

3. Random forest n_estimators = [10,30,60,100] and max_features = [‘sqrt’, ‘log2’]
4. Easy Ensemble
5. Decision tree criterion = [‘gini’, ‘entropy’] and max_features = [‘sqrt’, ‘log2’]
6. AdaBoost n_estimators = [10,30,60,100,200] and learning_rate = [0.1, 1.0]
7. RUSBoost

8. Balanced Random
Forest

n_estimators = [10,30,60,100], class_weight=[‘balanced’, ‘None’] and

max_features = [
(

max_features
2

)1/2
, (max_features)1/2, (2×max _features)1/2]

9. Balanced Bagging
Classifier

n_estimators = [10,30,60,100] and

max_features = [
(

max_features
2

)1/2
, (max_features)1/2, (2×max _features)1/2]

10. HistGradientBoosting learning_rate=[0.1, 1.0] and min_samples_leaf = [20,30,60]

11. Extra Trees n_estimators = [10,30,60,100], max_features = [‘sqrt’, ‘log2’] and
class_weight= [‘balanced’, ‘None’]

12. XGBoost n_estimators = [10,30,60,100,200] and eta=learning_rate = [0.1, 0.3, 0.5, 1.0]
13. SMOTE k_neighbors = [3,5,10,15,20]; sampling_strategy = [0.1, 0.3, 0.5, 1]
14. SMOTE+ENN sampling_strategy = [0.1, 0.3, 0.5, 1]
15. SMOTE+Tomek Link sampling_strategy = [0.1, 0.3, 0.5, 1]
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3.4. Performance Metrics

In learning an imbalanced dataset, classification accuracy is usually inappropriate
since traditional learning algorithms show bias toward the majority class against the
minority class of interest (anomalous event) and gives an overestimated high accuracy
score. Hence, it is critical to select the most appropriate evaluation measures that capture
the distinctiveness of an imbalanced dataset to avoid biased results. In the paper, the
False EVENT is considered the majority negative class-0 (non-anomalous EVENT), while
the True EVENT is the minority positive class-1 (anomalous EVENT). Consequently, the
most commonly used performance measures in an imbalanced learning research domain
based on the confusion matrix elements are defined and derived, as shown in Table 6 for a
two-class scenario classification problem [36].

Table 6. Confusion matrix for classification in a two-class problem.

Predicted Positive (Class-1) Predicted Negative (Class-0)

Actual Positive (Class-1) True Positive (TP) False Negative (FN)

Actual Negative (Class-0) False Positive (FP) True Negative (TN)

The performance measures are defined as follows:

True Positive Rate
(
TPR+

)
= Minority class accuracy =

TP
TP + FN

(10)

False Positive Rate (FPR) = 1− TNR− =
FP

TN + FP
(11)

Precision =
TP

TP + FP
(12)

Recall = Sensitivity = TPR+ =
TP

TP + FN
(13)

Balance Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
=

TP
TP+FN + TN

TN+FP
2

=
Sensitivity + Specificity

2
(14)

F−measure =

(
1 + β2

)
× Precision× Recall

β2 × Precision + Recall
(15)

F1-measure compares the trade-off between precision (fewer FPs) and recall (fewer
FNs), β is the hyperparameter value, when β = 1, give equal weights to precision and recall.

G−mean =
(
TNR− × TPR+

)1/2
=
√
(TNR− × TPR+) =

√
(Specificity× Sensitivity) (16)

4. Results and Discussion

In this section, the empirical results achieved, and discussion on them are presented.
For clarity, a list of acronyms adopted and used to present the results obtained in Table 7.
Encouraged by numerous studies in the imbalance learning domain, this study has consid-
ered six performance measures, including the models’ training times, to provide a better
insight into our experiments. However, only balanced accuracy, F1-measure and G-mean
would be used in analysing the results and the statistical testing for the following reasons.
Firstly, these three performance measures are all derived from the elements in the confusion
matrix, and secondly, they capture how well the examined combination of algorithms with
DS can deal with the imbalanced classification problem. Moreover, they are the most used
benchmark performance metrics used in the imbalance learning domain.
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Table 7. List of the acronym used in this paper.

Acronym Description Acronym Description

EASY Easy Ensemble Classifier DST Decision Trees
RUSB RUSBoost SVM Support Vector Machine
BRDF Balanced Random Forest Classifier STK 1 Stacking Classifier 1
BBAG Balanced Bagging STK 2 Stacking Classifier 2
HGDB HistGradientBoosting STK 3 Stacking Classifier 3
EXTR Extra Trees STK 4 Stacking Classifier 4
XGBT XGBoost DC Default setting base classifier
k-NN K-Nearest Neighbors OC Optimised base classifier
RDF Random Forest OR Optimised resampling method
ADB AdaBoost DR Default setting resampling method

4.1. Data Complexity Results

Following how the original dataset was provided, the calculated data complexity
measures on the training and test dataset are reported in Table 8. It is observed that their
complexity measures have a similar range of values since they are subsets of the same data
and have similar characteristics. Hence, it is also assumed that the complexity measures
would empirically have a similar range of values for the merged training and test sets.

Table 8. Complexity measures result in the training and test sets.

Dataset Complexity Measures

F1 F1v F2 F3 F4 N3 T2 T3 T4
Training set 0.824 3.322 × 10−8 4.79 × 10−4 0.979 0.886 4.33 × 10−4 6.497 × 10−5 5.775 × 10−5 0.889

Test set 0.857 5.964 × 10−8 1.187 × 10−5 0.993 0.978 2.17 × 10−3 7.820 × 10−5 6.951 × 10−5 0.889

The result obtained in Table 8 shows that a high F1 value means a weak overlap
between classes and represents an easier classification problem. F1v complements F1; the
very small F1v value confirms our dataset’s low classification complexity as indicated
by the F1 values. In our case, F2 is a very small value and tending towards zero, which
indicates that at least one feature is non-overlapping. Hence, it can be concluded that the
classification complexity is low. Low values of F3 and N3 indicate an easier classification
problem; however, based on the F3 value computed for our dataset (>0.8 for training set), it
contradicts F1, F1v and F2 as simple complexity problem. A lower value of F4 indicates
that it is possible to discriminate more examples and, therefore, that the problem is simpler.
However, in our case, F4 is high (>0.8), which also contradicts F1, F1v and F2 but supports
F3 and T2 to indicate a complex classification problem. As observed and pointed in
reference [9], some measures considered our dataset problem easy but difficult by some
other measure. This is because the different measures consider different aspects of the
dataset classification problem. Next, the F1, T2 and N3 measures of the WQAD dataset
and the datasets analysed in [9] are picked and compared. The top part of Figure 4 is the
F1xT2 pairwise comparison, while the lower part is the F1 × N3 pairwise comparison.
The datasets analysed in [9] are marked in blue circles; the ones marked in red diamond
are the WQAD training sets. It is observed based on Figure 4 that only two datasets (on
the lower end of the T2-axis and the upper end of N3) examined in [9] appear relatively
harder than the dataset examined in this paper based on the F1 × T2 and F1 × N3 pairwise
comparisons. Based on this empirical evidence and analysis, it can be concluded that our
training set, and by extension, the dataset is relatively complex and hence appropriate for
DS methods. Having established this empirical evidence, it is now appropriate to evaluate
the DS strategies’ performance on the WQAD dataset.
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4.2. Experiment 1—Analysis of Single and Static Ensemble Approaches

In the first experiment, optimising the 16 selected and the most used state-of-art
single and static ensemble algorithms in the WQAD domain are considered to see if their
performance could be improved, especially with the single classifiers. The results obtained
are reported in Table 9. Easy Ensemble classifier achieved the best result among the
other alternative in terms of balanced accuracy, F1-measure and G-mean. However, Easy
Ensemble and the many other ensemble techniques examined use random undersampling
(RUS) preprocessing to resample the dataset internally. The drawbacks associated with
RUS method in DS systems have been clearly articulated in [11], especially for a highly
imbalanced dataset like ours. Firstly, RUS is associated with discarding lots of potentially
useful information about the majority class. Moreover, random oversampling (ROS) is
reported in the literature to consistently outperform RUS in imbalanced data research.
Besides this, RUS has difficulties in permitting diversity in ensemble learning since the
minority class is always kept intact or unchanged during the resampling process. Hence,
not much weight would be attached to the Easy Ensemble algorithm and other RUS-based
resampling models’ results for these reasons. However, it is noticed that the optimised
XGBoost model exhibited the most notable and promising performance in terms of balanced
accuracy, F1-score and G-mean. In the future, it would be interesting to further investigate
the performance of XGBT standalone and with ensemble-based bagging models coupled
with DS strategies. The best results are highlighted bold in Table 9.

4.3. Performance Assessment of DS in Combination with Resampling Methods

Overall, it is observed that all the model combinations benefited from the experimental
scenario using the combined optimisation of the base classifiers and resampling methods
(OC+OR) compared with the coupling of optimised base classifiers with default settings on the
resampling methods (OC+DR). This observation is in line with findings in the literature [27].
Hence, from now on, our results analysis will be based on the OC+OR scenario.

4.3.1. Experiment 2—Performance Assessment for Homogeneous Ensemble

The second experiment evaluated the homogeneous ensemble approach, firstly using
the decision tree as a base classifier, and secondly using the random forest as base classifiers.
The results and the training time for each model are present in Tables 10 and 11.
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Table 9. Results with hyperparameter tuning of non-ensemble and static ensemble classifiers.

Stk 4

(k-nn,
rf, dt,
rbf
ker-
nel

svm,
adb)

Stk
3

(k-
nn,
rf,
dt,

adb)

Stk 2
(rf,

k-nn,
adb)

Stk 1 (k-nn,
adb) SVM DST AdB RDF k-NN XGBT EXTr HGDB BBAG BRDF RUSB EASY MODEL

0.602 0.602 0.641 0.569 0.787 0.615 0.705 0.645 0.569 0.787 0.619 0.628 0.648 0.649 0.725 0.805 B_acc

Metric
0.249 0.249 0.325 0.16 0.161 0.224 0.501 0.326 0.16 0.541 0.379 0.407 0.4 0.194 0.598 0.159 F1
0.212 0.212 0.289 0.151 0.691 0.246 0.413 0.299 0.151 0.584 0.237 0.256 0.3 0.335 0.451 0.738 Recall
0.302 0.302 0.372 0.171 0.091 0.207 0.637 0.359 0.171 0.504 0.942 0.987 0.601 0.136 0.885 0.089 Precision
0.459 0.459 0.536 0.386 0.781 0.492 0.641 0.544 0.386 0.76 0.487 0.506 0.547 0.568 0.671 0.802 G-mean
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Table 10. Results for homogeneous bagging-based ensemble approach combined with DS methods using the optimised
decision tree as a base estimator (pool of estimators = 100).

Resampling
Method Model

Performance Metric

B_acc F1 Recall Precision G-Mean Training Time (s)

SMOTE

Bg+mF+SM OC+DR 0.629 0.307 0.266 0.365 0.514 24.772
OC+OR 0.633 0.314 0.274 0.369 0.521 15.040

Bg+mF+SM+META OC+DR 0.686 0.133 0.465 0.078 0.650 2287.603
OC+OR 0.734 0.212 0.527 0.133 0.704 663.323

Bg+mF+SM+KNE OC+DR 0.684 0.133 0.462 0.078 0.647 28.574
OC+OR 0.734 0.221 0.523 0.140 0.703 16.624

Bg+mF+SM+KNU OC+DR 0.684 0.133 0.462 0.078 0.647 27.824
OC+OR 0.733 0.220 0.520 0.140 0.701 16.992

Bg+mF+SM+RANK OC+DR 0.642 0.072 0.486 0.039 0.623 28.252
OC+OR 0.786 0.294 0.616 0.193 0.768 17.079

Bg+mF+SM+LCA OC+DR 0.580 0.148 0.180 0.125 0.420 28.679
OC+OR 0.618 0.277 0.245 0.320 0.495 16.575

Bg+mF+SM+OLA OC+DR 0.642 0.072 0.486 0.039 0.623 28.373
OC+OR 0.786 0.294 0.616 0.193 0.768 16.933

SMOTE+ENN

Bg+mF+SMENN OC+DR 0.629 0.291 0.268 0.319 0.515 32.597
OC+OR 0.630 0.293 0.270 0.321 0.517 25.175

Bg+mF+SMENN+META OC+DR 0.642 0.300 0.300 0.300 0.540 2506.205
OC+OR 0.646 0.302 0.303 0.301 0.547 677.189

Bg+mF+SMENN+KNE OC+DR 0.641 0.300 0.300 0.295 0.542 36.079
OC+OR 0.645 0.300 0.301 0.299 0.545 27.321

Bg+mF+SMENN+KNU OC+DR 0.643 0.298 0.300 0.299 0.542 35.634
OC+OR 0.645 0.300 0.301 0.300 0.545 27.512

Bg+mF+SMENN+RANK OC+DR 0.571 0.057 0.292 0.032 0.498 36.565
OC+OR 0.571 0.057 0.292 0.032 0.498 27.659

Bg+mF+SMENN+LCA OC+DR 0.566 0.115 0.159 0.091 0.393 37.094
OC+OR 0.566 0.115 0.159 0.091 0.393 27.915

Bg+mF+SMENN+OLA OC+DR 0.571 0.057 0.292 0.032 0.498 35.918
OC+OR 0.571 0.057 0.292 0.032 0.498 28.222

SMOTE+TL

Bg+mF+SMTL OC+DR 0.638 0.277 0.291 0.264 0.535 33.064
OC+OR 0.696 0.331 0.410 0.277 0.635 25.937

Bg+mF+SMTL+META OC+DR 0.635 0.304 0.280 0.334 0.526 2535.888
OC+OR 0.717 0.233 0.479 0.154 0.676 655.614

Bg+mF+SMTL+KNE OC+DR 0.635 0.307 0.278 0.343 0.525 36.771
OC+OR 0.715 0.252 0.468 0.172 0.671 28.317

Bg+mF+SMTL+KNU OC+DR 0.634 0.306 0.278 0.342 0.525 36.486
OC+OR 0.716 0.253 0.471 0.173 0.673 28.516

Bg+mF+SMTL+RANK OC+DR 0.609 0.167 0.248 0.126 0.490 36.659
OC+OR 0.561 0.046 0.369 0.025 0.527 28.356

Bg+mF+SMTL+LCA OC+DR 0.573 0.156 0.161 0.150 0.399 37.098
OC+OR 0.592 0.200 0.196 0.205 0.440 27.730

Bg+mF+SMTL+OLA OC+DR 0.609 0.167 0.248 0.126 0.490 36.834
OC+OR 0.561 0.046 0.369 0.025 0.527 27.877
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Table 11. Results for homogeneous bagging-based ensemble approach combined with DS methods using the optimised
Random Forest as a base estimator (pool of estimators = 100).

Resampling
Method Model

Performance Metric

B_acc F1 Recall Precision G-Mean Training Time (s)

SMOTE

Bg+mF+SM OC+DR 0.636 0.313 0.281 0.354 0.528 137.030
OC+OR 0.643 0.321 0.295 0.351 0.541 83.127

Bg+mF+SM+META OC+DR 0.636 0.281 0.284 0.279 0.530 424.557
OC+OR 0.739 0.355 0.499 0.275 0.690 80.660

Bg+mF+SM+KNE OC+DR 0.636 0.281 0.284 0.278 0.530 152.451
OC+OR 0.739 0.355 0.499 0.275 0.699 90.355

Bg+mF+SM+KNU OC+DR 0.636 0.281 0.284 0.279 0.530 150.710
OC+OR 0.739 0.355 0.499 0.275 0.699 92.046

Bg+mF+SM+RANK OC+DR 0.625 0.242 0.267 0.221 0.512 150.640
OC+OR 0.742 0.259 0.528 0.171 0.711 91.948

Bg+mF+SM+LCA OC+DR 0.617 0.307 0.240 0.425 0.489 151.089
OC_OR 0.650 0.354 0.307 0.418 0.552 91.639

Bg+mF+SM+OLA OC+DR 0.625 0.242 0.267 0.221 0.512 151.464
OC+OR 0.742 0.259 0.528 0.171 0.711 91.352

SMOTE+ENN

Bg+mF+SMENN OC+DR 0.636 0.311 0.280 0.306 0.527 143.380
OC+OR 0.702 0.354 0.421 0.350 0.643 93.799

Bg+mF+SMENN+META OC+DR 0.639 0.326 0.286 0.381 0.532 429.103
OC+OR 0.709 0.264 0.451 0.187 0.660 235.195

Bg+mF+SMENN+KNE OC+DR 0.639 0.326 0.286 0.381 0.532 158.018
OC+OR 0.709 0.264 0.451 0.187 0.660 102.839

Bg+mF+SMENN+KNU OC+DR 0.639 0.326 0.286 0.381 0.532 158.615
OC+OR 0.709 0.264 0.451 0.187 0.660 101.156

Bg+mF+SMENN+RANK OC+DR 0.635 0.260 0.286 0.239 0.531 159.636
OC+OR 0.694 0.248 0.421 0.175 0.638 101.914

Bg+mF+SMENN+LCA OC+DR 0.625 0.351 0.254 0.567 0.503 157.479
OC+OR 0.658 0.410 0.319 0.574 0.564 102.472

Bg+mF+SMENN+OLA OC+DR 0.635 0.260 0.286 0.239 0.531 156.804
OC+OR 0.694 0.248 0.421 0.175 0.638 102.266

SMOTE+TL

Bg+mF+SMTL OC+DR 0.641 0.325 0.290 0.369 0.536 145.654
OC+OR 0.695 0.276 0.416 0.206 0.637 93.837

Bg+mF+SMTL+META OC+DR 0.638 0.299 0.286 0.313 0.532 494.437
OC+OR 0.712 0.334 0.445 0.267 0.660 267.526

Bg+mF+SMTL+KNE OC+DR 0.638 0.299 0.286 0.313 0.532 159.036
OC+OR 0.712 0.334 0.445 0.267 0.660 102.752

Bg+mF+SMTL+KNU OC+DR 0.638 0.299 0.286 0.313 0.532 159.767
OC+OR 0.712 0.334 0.445 0.267 0.660 102.799

Bg+mF+SMTL+RANK OC+DR 0.652 0.330 0.315 0.347 0.558 158.567
OC+OR 0.689 0.201 0.426 0.131 0.637 103.741

Bg+mF+SMTL+LCA OC+DR 0.615 0.319 0.234 0.503 0.482 157.489
OC+OR 0.636 0.364 0.277 0.531 0.525 104.609

Bg+mF+SMTL+OLA OC+DR 0.652 0.330 0.315 0.347 0.558 158.993
OC+OR 0.689 0.201 0.426 0.131 0.637 103.562

• For the result in Table 10 using the Decision Tree as the base classifier and SMOTE re-
sampling method, the models Bg+mF+SM+RANK and Bg+mF+SM+OLA were at par
and produced the best results in terms of balanced accuracy and G-mean scores, and
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with a relatively lower training time when compared to the other SMOTE resampling-
based models. However, they had slightly lower F1 than Bg+mF+SM model at the
expense of higher recall. For SMOTE+ENN resampling, Bg+mF+SMENN+META was
the better performer in terms of balanced accuracy, F1 and G-mean scores compared
to all the other SMOTE-ENN resampling-based models, but at the expense of a higher
training time. For SMOTE+TL resampling, Bg+mF+SMTL+META was yet again the
better performer in terms of balanced accuracy and G-mean score, but it had lower
F1-score and a higher training time compared to Bg+mg+SMTL, but still a better recall
score. The models Bg+mF+SM+RANK and Bg+mF+SM+OLA models achieved the
overall best results for the experiments in Table 10.

• For Table 11, using random Forest as the base classifier and SMOTE resampling,
the models Bg+mF+SM+RANK and Bg+mF+SM+OLA were at par and once more
produced better results in terms of balanced accuracy and G-mean scores and with
a relatively lower training time when compared to the other SMOTE resampling-
based models. However, the models had lower F1-scores compared to the DES-based
techniques (META, KNE and KNU). For the SMOTE+ENN resampling-based mod-
els, Bg+mF+SMENN+META, Bg+mF+SMENN+KNE and Bg+mF+SMENN+KNU
were at par and achieved the best results in terms of balanced accuracy and G-
mean scores, but had a lower F1-score and a higher training time compared to
the Bg+mF+SMENN+LCA model. For the SMOTE+TL resampling-based models,
Bg+mF+SMTL+META, Bg+mF+SMTL+KNU and Bg+mF+SMTL+KNE were at par
and yet again and produced better results in terms of balanced accuracy and G-mean,
but had a lower F1-score and a higher training time compared to Bg+mF+SMTL+LCA.
The models Bg+mF+SM+RANK and Bg+mF+SM+OLA had the overall best in terms
of balanced accuracy and G-mean, while the Bg+mF+SM+RANK model had a better
F1-score. The best results are highlighted bold in Tables 10 and 11.

4.3.2. Experiment 3—Performance Assessment for Heterogeneous Ensemble

In this third experiment, the DS strategies’ performance using a heterogeneous ensem-
ble approach (voting classifier) is considered, consisting of three optimised pool of classi-
fiers that presented the best results in an earlier study in [14], namely, k-NN, Decision Tree
and Random Forest classifiers. The results, together with the training time for each model,
are present in Table 12. For the SMOTE resampling-based models, the model without the DS
techniques (Vg+mF+SM) had a better result in terms of balanced accuracy, F1 and G-mean,
but slightly better F1-score using OC+DR configuration and a high training when compared
to the other models except for META models. For the SMOTE+ENN resampling-based mod-
els, Vg+mF+SMENN+META, Vg+mF+SMENN+KNU and Vg+mF+SMENN+KNE were at
par and were better performers in terms of balanced accuracy and G-mean but had a lower
F1-score compared to Vg+mF+SMENN+OLA. Their all had relatively shorter training time
except for the META models. For the SMOTE+TL resampling-based models, Vg_mF+SMTL
was the better performer in balanced accuracy, F1 and G-mean scores, but with relatively
higher training time, except for the META models. More so, Vg+mF+SMTL was the overall
better performer, but with a slightly lower G-mean score than the SMOTE+ENN based
DES models (META, KNE and KNU).
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Table 12. Results for heterogeneous ensemble (voting classifier) approach comprising three optimised k-NN, decision tree
and random forest as the pool of classifiers in combination with DS methods.

Resampling
Method Model

Performance Metric

B_acc F1 Recall Precision G-Mean Training Time (s)

SMOTE

Vg+mF+SM OC+DR 0.622 0.283 0.254 0.319 0.502 77.408
OC+OR 0.641 0.230 0.306 0.184 0.547 70.205

Vg+mF+SM+META OC+DR 0.623 0.241 0.260 0.225 0.506 272.770
OC+OR 0.634 0.236 0.288 0.200 0.531 99.401

Vg+mF+SM+KNE OC+DR 0.623 0.241 0.260 0.225 0.506 37.473
OC+OR 0.634 0.236 0.288 0.200 0.531 24.490

Vg+mF+SM+KNU OC+DR 0.623 0.241 0.260 0.225 0.506 38.549
OC+OR 0.634 0.236 0.288 0.200 0.531 24.801

Vg+mF+SM+RANK OC+DR 0.568 0.151 0.149 0.153 0.384 37.975
OC+OR 0.587 0.209 0.185 0.241 0.428 24.330

Vg+mF+SM+LCA OC+DR 0.578 0.160 0.172 0.149 0.411 37.721
OC+OR 0.594 0.226 0.198 0.263 0.442 24.542

Vg+mF+SM+OLA OC+DR 0.568 0.151 0.149 0.153 0.384 38.072
OC+OR 0.587 0.209 0.185 0.241 0.428 24.137

SMOTE+ENN

Vg+mF+SMENN OC+DR 0.602 0.249 0.212 0.302 0.459 83.422
OC+OR 0.620 0.226 0.258 0.201 0.504 66.978

Vg+mF+SMENN+META OC+DR 0.607 0.256 0.224 0.299 0.471 277.634
OC+OR 0.699 0.280 0.426 0.208 0.644 148.286

Vg+mF+SMENN+KNE OC+DR 0.607 0.256 0.224 0.299 0.471 47.621
OC+OR 0.699 0.280 0.426 0.208 0.644 34.371

Vg+mF+SMENN+KNU OC+DR 0.607 0.256 0.224 0.299 0.471 51.190
OC+OR 0.699 0.280 0.426 0.208 0.644 34.654

Vg+mF+SMENN+RANK OC+DR 0.568 0.152 0.150 0.153 0.385 49.381
OC+OR 0.586 0.216 0.180 0.271 0.422 34.809

Vg+mF+SMENN+LCA OC+DR 0.575 0.163 0.164 0.163 0.402 48.140
OC+OR 0.605 0.261 0.217 0.327 0.464 34.387

Vg+mF+SMENN+OLA OC+DR 0.568 0.152 0.150 0.153 0.385 48.981
OC+OR 0.586 0.316 0.180 0.271 0.422 36.321

SMOTE+TL

Vg+mF+SMTL OC+DR 0.615 0.261 0.240 0.284 0.488 76.781
OC+OR 0.700 0.375 0.413 0.343 0.639 82.793

Vg+mF+SMTL+META OC+DR 0.614 0.243 0.240 0.247 0.487 277.722
OC+OR 0.695 0.283 0.416 0.214 0.637 151.745

Vg+mF+SMTL+KNE OC+DR 0.614 0.243 0.240 0.247 0.487 48.019
OC+OR 0.695 0.283 0.416 0.214 0.637 34.916

Vg+mF+SMTL+KNU OC+DR 0.614 0.243 0.240 0.247 0.487 47.457
OC+OR 0.695 0.283 0.416 0.214 0.637 35.739

Vg+mF+SMTL+RANK OC+DR 0.568 0.154 0.150 0.157 0.385 48.760
OC+OR 0.587 0.210 0.183 0.245 0.426 34.777

Vg+mF+SMTL+LCA OC+DR 0.575 0.164 0.165 0.163 0.404 47.630
OC+OR 0.589 0.215 0.188 0.252 0.431 35.019

Vg+mF+SMTL+OLA OC+DR 0.568 0.154 0.150 0.157 0.385 46.687
OC+OR 0.587 0.210 0.183 0.245 0.426 34.821

Finally, based on all the experimental observations, the following main findings across
all the conducted experiments are drawn:
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• The experimental results demonstrate that all the models benefited from the com-
bined optimisation of both the classifiers and resampling methods in terms of the
performance metrics and the training time.

• Meta-DES technique’s performance appears similar to the Oracle-based techniques
(KNE and KNU). This could be due to the similarity in criteria for identifying the
base classifier’s level of competence for improving the precision of DES techniques.
Similarly, the DCS techniques (RANK, LCA and OLA) that also use similar criteria to
define the base classifiers’ level of competence produced closely similar performance
results, which align with the findings in [8].

• It is observed that the SMOTE resampling method had better performance in com-
bination with DCS strategies (RANK and OLA) for both decision tree and random
forest as base classifiers. On the other hand, SMOTE+ENN and SMOTE+TL appeared
to have better performance in combination with the META-DES strategy when using
Decision Tree as the base classifier. However, using Random Forest as the base classi-
fier, SMOTE+ENN, and SMOTE+TL had better performances combined with all the
DES strategies (META, KNE and KNU).

• For the heterogeneous scenario using k-NN, decision tree and random forest as
base classifiers, SMOTE and SMOTE+TL exhibited better performances with the
models without the DS strategies (Vg+mF+SM and Vg+mF+SMTL). This could be
attributed to the three strong base classifiers used. However, for SMOTE+ENN,
Vg+mF+SMENN+META, Vg+mF+SMENN+KNU and Vg+mF+SMENN+KNE were
the better performers across the three performance measures, especially the F1-
measure.

• Overall, Bg+mF+SM+RANK and Bg+mF+SM+OLA models based on homogeneous
ensemble-bagging with decision tree as the base classifier achieved the best results
in terms of balance accuracy and G-mean, while the Bg+mF+SMENN+LCA model
based on homogeneous ensemble-bagging with random forest had a better overall
F1-measure. The DCS strategies all achieving better results than the DES strategies
(META, KNE and KNU). The reason is most likely because the DES models are
developed and suit smaller sized datasets.

• The experiments reveal difficulty for any single model achieving a perfect predictive
solution; instead, different models present distinctive results based on the tradeoff
between precision and recall. This finding is in line with the findings in [23].

• Overall, the META-DES models had the longest training time for all three experiments.
This is because META-DES is a more complex algorithm that considers multiple
classifier selection criteria and takes an indirect approach using a meta-classifier to
evaluate the competency of a base classifier. On the other hand, the heterogeneous
experiments had relatively longer training times across all the DS strategies. This is
due to the additional complexity of using three distinct base classifiers.

• Since the experimental results show that META and the two Oracle-based DS methods
(KNE and KNU) achieved closely similar performance results on the one hand, while
on the other hand, Rank and OLA achieved similar performance results. The decision
on which model to choose would have to be further based on other factors such as the
models’ training time and computational complexities.

4.4. Statistical Test and Comparison of Ensemble Methods

From the results reported in Tables 10–12, the learning algorithms have been evaluated
on a single dataset but using different resampling methods. However, [37] caution on
the statistical process to be used when testing multiple classifiers on a single dataset to
avoid the problem of biased estimation, which will give rise to Type I error (i.e., of rejecting
the null hypothesis when it is true, usually controlled by choice of significance level
∝). This is because the computed mean performance and variance comes from repeated
training and test random samples, which are related. It is for this reason that the DS
methods with the three resampling methods are tested. This way, the dataset distribution
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is not entirely the same. The intuition here is that the multiple data set created from the
different resampling methods is only used to evaluate the performance measures, while the
differences in performance over the independent resampled dataset give us the sources of
variance and a sample of independent measurements. This assumes the form of comparing
multiple classifiers over multiple datasets. Comparing multiple classifiers with multiple
datasets, [37] recommends the Friedman rank test because it is a non-parametric statistical
and robust approach. Friedman’s test ranks the algorithms from best to worst on each
dataset for their performances. Friedman’s null hypothesis (H0) states that all algorithms
are equivalent, and their mean ranks are equal. In this study, balanced accuracy, F1-measure
and G-mean are used to analyse the different ensemble methods. The null-hypothesis
being tested is that all classifiers perform the same, and the observed differences are merely
random. However, as cautioned in [38–40], the extrapolation of the results obtained based
on the p-value = 0.05 threshold should not be taken in absolute terms due to inherent
uncertainties since it is based on certain statistical assumptions. Hence, it can be concluded
that the results’ interpretations are reasonably compatible with this dataset and with no
important effect given our statistical assumptions.

4.4.1. Homogeneous Ensemble with Decision Tree as Base Estimator

Table 13 is the average rank of the compared DS and ensemble methods considering
the three resampling methods (SMOTE, SMOTE+ENN and SMOTE+Tomek Links) based
on each of the three evaluation scores (Balanced accuracy, F1 and G-mean), using the
bagging-based ensemble method with the optimised decision tree as the base estimator.
Subsequently following the same explanation as above:

Table 13. Results for the average rank of the models based on each of the performance metric
(Balanced accuracy, F1-measure and G-mean) considering the three resampling methods with decision
tree as base the classifier.

Balanced Accuracy F1-Measure G-Mean

Ensemble Rank Ensemble Rank Ensemble Rank

Bg 4.667 Bg 2.0 Bg 4.667
Bg+META 1.833 Bg+META 3.833 Bg+META 1.667
Bg+KNE 3.0 Bg+KNE 4.0 Bg+KNE 3.167
Bg+KNU 3.167 Bg+KNU 3.167 Bg+KNU 3.167

Bg+RANK 4.5 Bg+RANK 5.167 Bg+RANK 4.167
Bg+LCA 6.333 Bg+LCA 4.667 Bg+LCA 7.0
Bg+OLA 4.5 Bg+OLA 5.167 Bg+OLA 4.167

For Balanced accuracy score, the df = 6, the significance level ∝= 0.05, p-value = 0.01119,
Friedman’s statistical test (Ftest) = 8.857, critical difference for statistical significance
(CD) = 5.200 are graphically represented in Figure 5. For F1-measure, df = 6, ∝= 0.05,
p-value = 0.867, Ftest = 0.286, CD = 5.200 are graphically represented in Figure 6. For G-mean
score, df = 6, the significance level (∝) = 0.05, p-value = 0.00215, Ftest = 12.286,
CD = 5.200 are graphically represented in Figure 7. For the balanced accuracy and G-mean
scores, the Bg+META-based model is ranked highest. However, the Bg model is ranked highest
on the F1-measure across all the resampling methods. All the p-values are for balanced accuracy,
and G-mean is lower than 0.05, indicating strong evidence against the null hypothesis. Therefore,
the null hypothesis for these two results is rejected. However, for the F1-measure, the p-value
is above 0.05, falling short of statistical significance and indicating little evidence for the null
hypothesis. Meaning, the overall result is only marginally statistically significant. Therefore, the
alternative hypothesis is slightly rejected.
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Table 14 presents the models’ overall average rank considering all three performance
scores (balanced accuracy, F1-measure and G-mean) across the three resampling methods
with decision tree as the base classifier: df = 9, α = 0.05, p-value = 4.540e-5, Ftest = 20.0,
CD = 7.821. The result is graphically represented in Figure 8. The p-value is lower than
0.05, indicating strong evidence against the null hypothesis. Therefore, the null hypothesis
is rejected for this overall result.

Table 14. Overall results of the average rank of the 10 best models considering all the three per-
formance metrics (Balanced accuracy, F1-measure and G-mean scores) across the three resampling
methods with decision tree as the base classifier.

Ensemble. Rank Ensemble Rank

Bg+SM 7.333 Bg+SMTL+OLA 3.167
Bg+SM+META 5.5 Bg+SMENN+META 5.667
Bg+SM+KNE 5.167 Bg+SMENN+KNE 7.167
Bg+SM+KNU 6.333 Bg+SMENN+KNU 7.167

Bg+SM+RANK 3.167 Bg+SMTL 4.333
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4.4.2. Homogeneous Ensemble with Random Forest as Base Estimator

Table 15 is the average rank of the compared models considering the three resampling
methods based on each score (G-mean, F1 and Balanced accuracy scores), using a bagging-
based ensemble with the optimised random forest as the base classifier. For balanced
accuracy score, df = 6, ∝= 0.05, p-value = 0.1561, Ftest = 3.7143, CD = 5.200; the result is
graphically represented in Figure 9. For F1-measure, df = 6, ∝= 0.05, p-value = 0.1561,
Ftest = 3.7143, CD = 5.200; the result is graphically represented in Figure 10. For G-mean
score, df = 6, ∝= 0.05, p-value = 0.05393, Ftest = 5.840, CD = 5.200; the result is graphically
represented in Figure 11. These results present mixed statistical inferences, Bg+RANK
is ranked highest for balanced accuracy, Bg+META, Bg+KNE and BG+KNU are at par
and ranked the highest for F1-measure, while for G-mean score, Bg+KNE and Bg+KNU
are at par this time and ranked the highest. Since the p-values for the balanced accuracy,
F1-measure and G-mean are all above 0.05, falling short of statistical significance and indi-
cating little evidence for the null hypothesis. Meaning the overall result is not statistically
significant. The alternative hypothesis is, therefore, rejected.

Table 15. Results of the average rank of the models based on each of the performance scores (Balanced
accuracy, F1-measure and G-mean) considering the three resampling methods with the random forest
as the base classifier.

Balanced Accuracy F1-Measure G-Mean

Ensemble Rank Ensemble Rank Ensemble Rank

Bg 5.5 Bg 4.0 Bg 5.333
Bg+META 2.667 Bg+META 3.0 Bg+META 3.0
Bg+KNE 2.667 Bg+KNE 3.0 Bg+KNE 2.5
Bg+KNU 2.667 Bg+KNU 3.0 Bg+KNU 2.5

Bg+RANK 1.167 Bg+RANK 6.5 Bg+RANK 4.0
Bg+LCA 6.667 Bg+LCA 2.0 Bg+LCA 6.667
Bg+OLA 4.167 Bg+OLA 6.5 Bg+OLA 4.0
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Forest and Decision Tree). For Balanced accuracy score, df = 6, ∝= 0.05, p-value = 0.6303, 

Figure 11. Average rank pairwise comparison of the models in terms of G-mean with the random
forest as the base classifier.

Table 16 is the overall average rank of 10 best models considering all three scores
(balanced accuracy, F1 and G-mean), df = 10, α = 0.05, p-value = 1.6701e-05, Ftest = 22.0,
CD = 8.7161. Bg+SM+KNE and Bg+SM+KNU are tied and the top-ranked models. The
result is graphically represented in Figure 12. Since the p-value is lower than 0.05, it
indicates strong evidence against the null hypothesis. Therefore, the null hypothesis is
rejected for this result.

Table 16. Overall results of the average rank of 10 best methods considering all the three performance
scores (Balanced accuracy, F1 and G-mean scores) across the three resampling methods with the
random forest as the base classifier.

Model Rank

Bg+SM+META 3.667
Bg+SM+KNE 3.167
Bg+SM+KNU 3.167

Bg+SM+RANK 4.5
Bg+SM+OLA 4.5

Bg+SMENN+META 8.833
Bg+SMENN+KNE 8.833
Bg+SMENN+KNU 8.833
Bg+SMTL+META 6.833
Bg+SMTL+KNE 6.833
Bg+SMTL+KNU 6.833
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4.4.3. Heterogeneous Ensemble Compose of k-NN, Decision Tree and Random Forest

Table 17 shows the models’ average rank considering the three resampling methods
based on each performance score (balanced accuracy, F1-scores and G-mean), using a
heterogeneous ensemble approach composed of three optimised classifiers (k-NN, Random
Forest and Decision Tree). For Balanced accuracy score, df = 6, ∝= 0.05, p-value = 0.6303,
Ftest = 0.9231, CD = 5.200; the result is graphically represented in Figure 13. For F1-score,
df = 6, ∝= 0.05, p-value = 0.0662, Ftest = 5.4286, CD = 5.200; the result is graphically
represented in Figure 14. For G-mean score df = 6, ∝= 0.05, p-value = 0.5647 Ftest = 1.1428,
CD = 5.200; the result is graphically represented in Figure 15. All the individual p-values
are higher than 0.05, indicating strong evidence for the null hypothesis, which means the
results are not statistically significant. The alternative hypothesis is, therefore, rejected.
Moreover, for F1-score and G-mean scores, Vg+META and Vg+KNU are the top best
compared to the other models.

Table 17. The average rank for best DS method based on balanced accuracy, F1-measure and G-mean
with heterogeneous base classifiers.

Balanced Accuracy F1-Measure G-Mean

Model Rank Model Rank Model Rank

Vg 2.0 Vg 3.667 Vg 4.0
Vg+META 2.667 Vg+META 2.5 Vg+META 2.333
Vg+KNE 2.667 Vg+KNE 3.0 Vg+KNE 2.333
Vg+KNU 2.667 Vg+KNU 2.5 Vg+KNU 2.333

Vg+RANK 6.5 Vg+RANK 6.667 Vg+RANK 6.167
Vg+LCA 5.0 Vg+LCA 5.0 Vg+LCA 4.667
Vg+OLA 6.5 Vg+OLA 4.667 Vg+OLA 6.167
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Table 18 is the overall average rank of selected top-10 best models considering all
three scores (balanced accuracy, F1 and G-mean), df = 10, α = 0.05, p-value = 1.6702e-05,
Ftest = 22.0, CD = 8.7161; the result is graphically represented in Figure 16. The baseline
model Vg+SMTL is the top-ranked model; the result is graphically represented in Figure 16.
Since the p-value is lower than 0.05, it indicates strong evidence against the null hypothesis.
Therefore, the null hypothesis is rejected for this result. The result suggests that the model
Vg+SMTL has a better performance than the DS techniques for this configuration.

Table 18. The average rank of 10 best methods considering all the three performance scores (Balanced
accuracy, F1 and G-mean scores) across the three resampling methods.

Ensemble Rank

Vg+SM 9.0
Vg+SM+META 9.667
Vg+SM+KNE 9.667
Vg+SM+KNU 9.667

Vg+SMENN+META 3.667
Vg+SMENN+KNE 3.667
Vg+SMENN+KNU 3.667

Vg+SMTL 2.0
Vg+SMTL+META 5.0
Vg+SMTL+KNE 5.0
Vg+SMTL+KNU 5.0
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with missing data and resampling methods for dealing with the imbalanced WQAD prob-
lem. The study investigated based on homogeneous and heterogeneous-based ensemble
approaches considering two scenarios. Firstly, with optimised base classifiers and default



Symmetry 2021, 13, 818 31 of 33

configuration settings of resampling methods, and secondly, with optimised base classifiers
and optimised resampling methods. The two ensemble base classifiers examined were
the decision tree and random forest. For the experiments, one missing value method
(missForest), three resampling methods (SMOTE, SMOTE+EENN and SMOTE+Tomek),
and six DS techniques comprising of three DCS methods (RANK, LCA, OLA) and three
DES methods (KNORAE, KNORAU and META-DES) were considered.

The experimental results demonstrate that all the models benefited from the combined
optimisation of both the classifiers and resampling methods. However, we conclude
that, overall, considering the three resampling methods and three performance measures,
dynamic classifier selection (DCS) methods exhibited better performance for the WQAD
classification problems, especially with the SMOTE resampling method. Additionally, we
also observed similar classification performance for the DS techniques using the same
source of information criteria for defining base classifiers’ competencies in a pool. For
example, the Oracle-based KNE and KNU had similar performance, just as the accuracy-
based LCA and OLA also showed similar performance.

Based on the results of our experiments, dynamic selection techniques can enhance the
performance of ensemble models in terms of the balanced accuracy, F1-measure and G-mean,
which is an indication of the classifiers’ ability to effectively learn from imbalanced datasets.

6. Study Limitations and Future Research Directions

In this study, only one dataset problem has been investigated. An interesting direction
to pursue (in our next journal paper) will be to conduct an empirical comparison of several
DS methods on many different WQAD dataset problems in terms of structure and size.
A critical consideration in DS is selecting a base classifier’s competence using the DSEL
for an imbalanced dataset. A deeper investigation on ways of ensuring a balanced DSEL
distribution before/during the pool generation and selection phases is an area for future
research direction that could lead to a better RoC and arriving at the most competent base
classifier for a given classification task. Utilising a deep neural network, XGBoost or SVM
as base classifiers in bagging-based ensemble DS scheme is also an interesting research
endeavour, especially on the imbalanced big data problem.

Finally, in this study, feature selection was not exploited. Firstly, this is because the
study had exploited tree-based models as base classifiers (decision tree and random forest),
which have proved robust in terms of generalisation ability on new data points (the curse
of dimensionality) and mitigates data multicollinearity. Secondly, water quality anomaly
detection is a complex problem, which means various contaminants could have a direct
link with any of the sensor signal variables. Nevertheless, it could be possible to improve
the predictive performance by applying feature selection techniques. This direction is left
for future study.
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