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We develop a class of bléck unificati ' Abstract

numerical integration of third :ldlcagon “au i imp indiied (BI.JMM)_ which are used as boundary value methods for tie

layer flow. The method solves t]rq e boundary value problems in ordinary differential equations resulting from boundary

equations before solving. The bloil?ri)b_lem fhrectly l_nstcad of converting it to a system of first order ordinary differential

fmotion and employ'mg.inte lock unification multi-step methods are constructed using Chebyshev polynomials as basis

Hiugictical & des erpolation and collocation method.The basic properties of the methods are investigated and
xperiments are given to show the performance of the methods.

INTRODUCTION

;‘;l:“g;zt;nt:;ggt&hisg}?:{g?:lll;;:;ﬁn Tamal?latlcal modcl_s are developed in science, engineering and technology to
il $ts desivatives gy g Koet mlesﬂjl\-n e m:?thematlcal mgdcls are cxpres§ed in equations in which? function
or taore Several variahies 45 calléd d.'ff equation thzilt contains some _denvat{ves of an un]g:own fun;hon of one
st bot alon B Sl T & eratia. ifferential equation. These ‘eguatlons arise not o'nly in fields like ‘physmal
Sisdels ek distnuaniliae 11: on r-esearch, psycholc.)gy,_ mcd1c1.ne, economics, engineering, etc, ranging from
e oot ks, acoustic wave propagation in relaxing media, draining and coating flow problems
o the deflection of a curved beam that has a constant or varying cross section and as such faster and more accurate
numerical methods are required.

_Stcady flow of viscous incompressible fluids has attracted considerable attention in recent years due to its crucial role
in numerous engineering applications. Numerical analysts encounter actually a wide variety of challenges in
obtaining suitable algorithms for computing flow and heat transfer of viscous fluids (Bataller, 2010). Boundary layer
flow problems of third order and third order ordinary differential equations have been discussed in many papers in
recent years. Examples of such papers are (Abdullah et al 2013; 2013) who had developed a fifth order block method
using constant step size with shooting technique to solve third order non-linear boundary value problems and
developed a fourth order two-point block method for solving non-linear third order boundary value problems. The
combination of the standard adomian decomposition method and a finite difference scheme, while taking note of
their respective advantages and disadvantages, was used to solve the Blasius problem in Akdi and Sedra (2014). This

way the coupled method offset the limitations of the individual methods. Aminikhah and Kazemi (2016) used quartic

b-splines approximations to construct the numerical solution to Blasius equation. Collocation approximation was

applied in deriving schemes that were applied as a block method to solve special third order initial value problems n
Olabode (2009). Jator (2008) used a continuous linear multistep method to generate multiple finite difference
methods that were assembled into a single block matrix that was used to solve third order BVPs. Jator (2009)
presented Multiple Finite Difference Methods obtained from a linear multistep method of step 4, these were used to
solve third order boundary value problems directly.A family of three step hybrid methods independent of first and
second derivative components using Taylor approach were proposed to solve special third order ODEs in Jikantoro ef
al (2018), These were all dorie without reducing the ODEs to equivalent systems of first order ODEs.Ahmed (201 7)
used the variational iteration method-to get numerical solutions to third order ordinary boundary value problems after

reducing them to a system of first order ODEs. . _ 1
In this paper, third order ordinary differential equations resulting from boundary layer flow such a
and Falkner-Skan are considered.

s Blasius, Sakiadis

METHODOLOGY

In this section, the constructi
approach is discussed, which W
The starting point is to construc

on of the block unification multistep method through th‘e interpolation and ;20“0(:81210[’1
ill be used to produce several discrete schemes for solv!ng boundary layer flow.
¢ the block unification multi-step method (BU MM) which has the form
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U(x) = | :
()= 8, (07,1, + &0 (Y + @)y, + B 2B, () ) + 1B, a
j=0 " ntw? )
k
Where v = 2 fO?‘ even' k-
£+_1 for odd k
2

a,(x),a,,(x),a ;
0 s . . . ¥
Lo ( ), ) ﬁ IL ﬁw are continuous coefficients and v is chosen to be half the step number so that the
formula derived from (1) satisfies the root condition. |
The main and additional methods are then obtained by evaluating (1) at X, ; where

J=1(1)2v, j # v 1,v to obtain the formula of the following form:

. . o
yu+j + avyn+v * av—lyn+v—1 + a()yn = h32ﬁifn+i + hJﬂwfyH.w . (2)

i=o

The first and second derivative formulas for (1) are used to generate additional methods by evaluating U’(x) and
U'(x) at X455 j= 0(1)k _The construction of (1) is discussed in the following theorem.

Theorem 2.1 Let TJ (x): J = 0(1)(k T+ 3) be the Chebyshev Polynomial used as basis function and W a vector given

)T where T is the transpose. Consider the matrix V defined as

by W = (yn ’yn+v—1’yn+v’.f;i’fn+l"“5fk

i TO(xn) ‘T’l(xn) w48 Tk+3(xn) )

TO (xn+v-—l ) T‘l (xn+v—l ) . Tk+3 (‘xn+v—1 )
TO (xnﬂ ) Tl (xn+v) -t Tk+3 (xn+v )

v=| T, L) T/ (%)
TO"(erl ) T‘l'(xnﬂ ) .o k+3 (xn+l )

L TO"(an: ) 2 T']vv(x"+k) Tk'::i (xn+k) J .
and obtained by replacing the jth column of V by the vector W and let (2) satisfy

U(xn+j)='—y,,+j j==0,v—1,v and j=0,v-—2,v—1,v |
(€))

i) =fay =008
then the continuous representation (1) is equivalent {0
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im0 det(¥) /) @)

Proof The basis function for (1) is taken as

k+3

@, (x) =3 ;T (%),
=0 j=0,v=1Lv

3 k+3
B x) = 3 B T(), j=0(k : )

. =0

where a,,, . b’ . :
i+l,j 3 h ﬂ”[,j are coefficients to be determined

Inserting (5) into (1) gives

k+3 k43 £

U(X) Zal+l v (x)ym-v + zawl v—lT (x)ynw-l + zaxﬂ DT (x)yn

hazzﬂlﬂj l(x)fn+_; +h kis a'+l w l(x)fn+w!

J=0 i=0

Simplified to

j=0

k+3
U(x) Z{ 1+lvyn+v +a1+l v—lyn+v 1 +a:+l Uyn +Zh 161+l_,fn+; +h ﬁxﬂ wfm-w}T (x)

expressed in the form

k+3
U(x)= Z 1,1 (x) (6)
i=0 ‘
Imposing conditions (3) on (6), a system of (k+4) equations is obtained which could be expressed in the form

VH=W where

)T is a vectors of (k+4) undetermined coefficients.

H= (7]0,771:”25;"!”‘:+3

The elements of H are found using the Cramer’s rule

det(V)
det)

n, = = 0)(k+3)

W. Using the newly found elements of H, (6) is re-

where Vj is obtained by replacing the jth column of V by

written as
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tddet(V))
)= —L-T,(x)
= det(V)

luating the BUMM (1) at X, { = L...,v=2,v+l,.. .,k and using it to obtain the first derivative formulae

n by

] ' " &
x)= ;[“f(ﬂym @ (DY + @y ()Y, + B LB o)+ WL ] )

ctively applied by imposing
e ad J !
(@) = y5,U'(D) = yy
roduce derivative formulae of the form (7).

+ second derivative formula is also obtained from (1). This is given by

(x) (a (x)ymv +av I(x)ynu -1 +a0(x)yn +h32ﬁ (x)fn-,a +h ﬁw(r)fm-w ) (8)

sctively imposed by applying
(@)= yg,U"(B) = yy

zenerate (8)

ecification of Methods
derive an implicit three step r=13,

5k=3,v= z , to give the continuous form as:

method with one off-grid point, the following specifications were considered,

)= oy + Oy + CrYei W LBoSa* Biun  Bufus * PrS 3 % Boua] ©)
3
aluating equation (9) at points X = X,,3,¥ =X I gives
3
w3 Ve~ 3Yps t3Vm2 ¥ h o +'—h3f.+1 hjfmz h3f ': ‘—h g -
s %y. - %yn. + %‘- Your * ;;—;%h’f. 2191]610 W fon* 112319 Joa - %b‘,_f‘“: +
g s o
he first derivative formulae are
19 Page
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., 3 1 167, 571 101 793 B
1n:—— 2 _— - h n+ -
Y, ==5 a2 =5 Y2 ¥ 040 W fut Teg0 for 20" I 3000 f", 420

; 1,1 11 173 1 27 I
Byl === Vn = Vw2~ T sp 103 par L Wf, =L pf L +—K
Vra = M T 470 S 20 Joa* 05" I 1568 f~+§ 336 "

n+3

’ 1 3 13 367 2 1
hyn+ =—yn—2yn+ yn+ h3 +'__'h3 +—_—h3 h o —— h +
P2 e o g 140 Fra™ 3920 fm; " I
, 5 8 11 - 680 310459 25679 38813
by 3==Ya—3¥mt " Vn b B ————— P W h?
w16 " 37T 67107163 In* 316480 WS * S1030 W w2 511680 " 7]
3865 '
h3
+oaoaa I
, 3 5 2393 39
hyn+ =_yn _'4yrr+ +_yn+ ‘___'h3 h3 h3 i — h
3 2 1 2 2 980 fn 3360 fn+l fn+2 1568 fn+-§ 560 n+3
. (11)
for n=03)N —3) -
And the second derivative formulae are
3R89 227 53
h2 —2Y,0 Vs =g iy h h3 n
=30 =D+ Fua " ogo "I 320" T Va0 I 112 at 180 &
hzy +l 2y +1+yn+2+ 53 h?’f +_h3f—1 11 h3f+2 hsf T f+3
" 8 2520 =12 = 40 8 n+3 45 "
3
By = gLy + Yo b R B o R s
180 "+3
407 641 71 29
2 =y, - — +—h3 P g0 f
h y?H-% yﬂ 2yn+l +yn+2 + 68040 fn f.ﬂ—l 64-8 fn+2 420 f""'z}' 1215 n+3
1- 79 81 .3 1% .5
- — —f ——h3 W f  +—h +—n
W yna= 2}'@1 + Vot 540h [ 60 Soa 120 Sz 140 fm% a5 " 3
(12)

for n= 03N —3)
CONVERGENCE OF THE METHOD

Here the convergence of the method is established. The equation (1) is evaluated at X, » ¥pe2s0eer Sntv-2? X

yorss Xoras Xnszy 0 gwe ;

1 — K3 m 3 ()
yn+l+a(1)yn+v+av-1yn+vl+ () hZﬁ, f"+f+h ﬁm fn+w
i=0

k
9 _ 1,3 (2) 3 7(2)
Yne2 +a(2)yn+v +a\(i)1yn+v-l +aE() )yU =h Zﬁ’ f’”"' +h @ Jnta
i=0

k
= (v-2) ¢ 3 n(v-2) (13)
V-Z) 3 (=2) = h3 i fl + h ﬂ j;n-cu
yn+v—2 +a ym-v + av-—l y + ao y ; 181 n+i @®
k
3 (v+1) hSﬁ(vH)f
; (v+l) (v1) + a““) == h ﬁ .fn+: + @ n+e
Yarvi Y nv +a, Yy 0 Yo 'Z__;d !
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? (@) (@) (@) L
L ¥ Ay Vmev + L2 S ¥ aﬂw Yo ™ hJZﬁi(m)fnu' * hsﬂgjm) n+w
i=0

’ (%) () () 1%
n+k A, Yy +a\hlyn+v-l +a0 Yo = h Zﬁi(k)fn-&i +h3ﬁt£)k)fn+m ’
i=0

J'(x) is evaluated at x, .. j = 0(I)k and x,,, to give
n+ao

’ r(0) (0) k o

Iy +a +a r(0) -

- v Vs vl Vurva T &g Y, = h z I,ﬂ:',m)f;wi + haﬁ:g(mfﬂm
’ i=0

' (1) (1) X ,
v +a Py, + a0y + iy, =Y B, + BB,
i n+a
i=0

(14)
k
w' (@) (@) (@) 3
Y 42 @y DY 2Py, =Y B [ + BB v
i=0
o 3 r(k) & & i .
1y, - av Yy + a\-‘l yn+v—I + a{’)( )yn = thﬁi'(k)fnﬂ' + hlﬂ;)(”ftﬁa)
i=0
.nd also evaluate U"(x)to give
) k
" n(0) n(0) (0) i3 0
Iyn i av yn+v + av—l yn+v—l + ag yn - h Zﬁ:’( 2 n+i + h_éﬁa’;m)fm-a:
i=0
k
» (1) n(l) 1) _ 7,3 1
) + av Ynsv 3 av—l Yniv- + a; Yn = h Zﬁi"( )fm-f + hBﬂ;u)frﬂm
i=0
: (15)
k
»” (@) r(@) (@) — 13 n (o) 3
Tyn+av yn+v+av—l yn+v—-l+ag yn —h Zﬁr wfn+i+h ﬁ;(m)fnﬂ»
i=0
k
n (k) (k) w(k) ., _ 13 (k) 3 pn(k)
Iyn+av yn+v+av-l yn+v—1+a0 yn'_h Zﬂ: fn+1‘+h /Bm fn-l-m
i=0
J1 the equations in (13) to (15) are of order O(h“s) and can be compactly written in matrix form by introducing
N x 3N matrix defined by

1e following notations. Let A be a 3
Ay A A

4=| A, Ay Ay |where A,
Ay Ay A

are N x N matrices given as
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f 1(0) 1(0) 1(0)
avl al' aO
re(0) (o) re(0)
vl a, aO
1 a¥ a@ o
b)) 2
| A A a?
1 a? a™? al™
1 a‘(\_: a:") ('x(()v)
k) k ; ’
1 a)f o’ oy
1(0) +{0) 1(0)
a,, a, o,
m m (M
1 al)  a)) o
(v-1) (v-1 0
1 av—l 3 avv ) a[())
) o M
l av—l av a[)v
(k) (k) (k)
k 1 av—l av ao /
(1) (1) (1) S
a,, a, Q
a;(2) a",(z) a:}(z)
= 1(k) (k) r(k)
T, B o W) D)
a.v—l a‘v a_O
(k) rik) 1(2v)
. a,, o Oy ")
(1) 11(1) re(1) 3\
a,, a, a,
2
a;f(2) a;'ﬂ) a{,’”
= 1r(k) re(k) re(k)
a, a, (21 ) " .an(l)
a,. a_v : 0
re(k) r1(k) r1(2)
L vr_l .av aO /

rix B which is a 3N x 3N matrix defined as

B, B,
=| B,, By
B31 332

Bl3
B23
B33

rere B, are N x N matrices given as

5?$BK£019(3&3ﬂCAL5¢HmCES

, A, Ay, Asy, are N x N null matrices and Ay,

SCIENCES BIENNIAL INTERNATIONAL CONFERENCE FUTMINNA 2019

A,, are NxN identity matrices. Similarly, another
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r
ﬁl'(ﬂ) ﬂzr(())
ﬂ]”() ) /BHO
2
(1) m
1 2
ﬂ]("‘z) ﬁzv-z)
ﬁ]("*") ﬂ§v+l)
(x) ®
1 2
(1
o g

1 (k) (k)
P

L

[ ﬂl”(l) B 0))

peE g - s

\

()

k

()

k

N

k

(v-2)

k

(v+1)

k
(;(0) l,(u) 10)

k
(;(0) ﬂ;m ;(l)
v-2) (v-2 .
Po : ) B !

f:el) ﬁl(h_q) (4D
(k) k)
0 1 . éh)

B B

A

B

r(1) 1 1

0 . ﬁ;() e ;,()
r(k) 1(k k
0 [}l( ! ;:( )

k
B,

1(k) k k
4 ﬁlr( ) ;( ))
ﬁ"(l) .
k
;r(l) -
re(l) (L 1
O S
ir(k)

11 (k) rr(k) .
0 161 ST

ﬁ(;:(k) ﬁln(k) o ﬁk

are N x N null matrices

k

re (k)

s Biss B,y By, B,,, Bs
\d then the following vectors are
= (yn+1’-“’yn+kahy:1+1"'
=((*un ) o V(X ik ); hy' (X1 )
‘=(.fn+l""'Jf:|+2v!hfp:+1"'

AL SCIENCES
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N s lu--.,l’- l' ln T
m— '(O) 3 N> ) E )
Ck] (Bﬁo h -f;J h@‘;:ﬁ;(n)h3‘f; —Vh{u ﬁ(O)hB 23
ﬁl; h fO;O,.-.,O,ﬂc;(]]hsf = <0 :] ‘f.o ‘—yo, 0 h f;}j'--,ﬁévwz)hjf‘o,ﬁo(v+l)h3fu’__-’
m(k) g3 ” - —ao yo’ﬂ'{ }’13 — ') 7173 "
B h” 1, ha"m}’o,o,._,O)T 0 Jo— ks ¥0:0,...0, 8, VR fﬂ_ao“)yo’

with L(h) Fepresenting the Joca] truncati
on

Theorem 4.1: Let (y,, 3!, 3" pe an approx

ordinary equations from boundary layer flo

€ITor vector at the point X, of the methods (12) to (14).

imation to the solution vector (y(x,), y'(x,), ¥"(x,)) for the third order
w. If e, = b*(xl.) —J"il-e; = Iy’(xi)—y:[,elf': ly"(x'.)—yﬂ, where the
O(x), y'(x), y"(x)) is s i i ; Y|, the
. : ) everal times differentiable and if |E| = |[¥ — Y|, then
the BVMs a:‘fzsa:d to be convergent of order k + 2 which implies that " " "

” E” =0O(h"™"), where k is the step number.

};“;?i ggg}f (c;)ﬂl: ? iCtIio;;l :0 f)the System formed from (13) to (15) given by (16)

where 147 &t -tmﬂ.cation €ITor vector obtained from the formulae (13) to (15). The approximate

form of the system is given by

PY -hQF(XY)+C=0 -

where Y isthe approximate solution of vector ¥ . :

Subtracting (16) from (17) and letting E = [ =] = (... ex €]} efr---€})" and using the mean value

exact solution given by the vector

theorem, we have the error system
(P-hQB)E = L(h) -

where B is the Jacobian matrix and its entries B, ,r,s =1,2,3, are defined as

(afi(r-—l) af,"_“ h
D 5f;;_”
B — . . :r_”
L 6f}\(,r-” %) )‘v
—_— s-1)
\afi(s 1) Bf.:, )

From (17) and L(h)
E=(P-h'QB)"L(h)

E=SL(h)
| = szew _

= O(hHO(h*) .

B O(h“z) | d the global errors are of order O(h™™) )

s gent an . equation- A
Which show that the methods are cOnVer , . and Falkner-Skan
. jon, Sakiadis equatio
Numerical Examples . -4: Blasius equatio™
dered- eth

Here, three numerical examples art; ‘;zﬁftlions Jsing Runge-Kutta @

three solutions were compared Wi
Problem I: Blasius Equation

2}'. + }yw = 0
N0)=0,y'(0)=0,y' (=1
Table 1. Comparison of the Solutions

- ~~_Proposed Method

from

{124 |Pagc
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1.0 o 1 ¥(x.) 2 ENN]ALIH’!’ERNA?OKALCONFERKNCEFEHMINNASOB
20 13 geoilsT 0.5063049940 . o Y 10) Wx,) ¥'(x,) N
3.0 25 0-4442717691 1.05166455] 0.9381906626  1.021157016 0.506305291 0938;0698 27
40 33 0'3235496973 1.679698960 g'?2;0337080 0.5442717609 1051664633 0381033607 51
50 41 on 7462516 > 432240676 0. 9551177 0.4045497078  1.6796990467 0.168955073 75
T 0 30 goisseses yariill 2432249926  00sa0siios 5
Problem 2: Sakiag. N ; 2563 03325659529  3.3170985488  0.0155692560 12
zyu+yy,,= 0 w
Y(0)=0,5'(0) =1, y(e0) = ¢ '
5 ri' able 2. Comparison o the Solutiong :
posed Method rom Proposed Methods and Runge-Kutta Method
x N y'(OW” ‘ R'-:n(g)e-Kutta :
10 9 -1.062106604 (435814 Y (o) ) y(x) y(xa) N
20 17 06214631716 0.895488:52149 -0.9021137979  -1.0621056881  0.4858148417  -0.9021137490 27
30 25 -0.5078781704 1-1905347(5)70 -0.3357451645  -0.6214629182  0.895488335  -0.3357452060 51
40 33 -0.4687973723 1.377935552 -0.1428727781  -0.5078780256  1.190534757  -0.1428727865 75
5.0 41 -0.4539702818 1.437355776 -0.06161582430  -0.4687972558  1.3779357168 - -0.0616581740 99
: -0.02661787579  -0.4539701772  1.487355831  -0.0266178690 12

Problem 3: Falkner-Skan Equation
£+ Bof ) f @)+ Bl /) )=0

S(0)=0,f'(0)= 0,lm f"(n) =1

Table 3: Comparison of the Errors from Proposed Methods and Runge-Kutta Method

Proposed Method Runge-Kutta Method
x N y'(x,) y(x,) N () y(x.)
0.1 9 0.5223955323 0.6065298823 27 0.522394253 0.606530550
0.2 17 0.03825982349 1.510386946 51 0.0382595394 1.510388234
0.3 25 0.0014085063 2.502848721 75 0.0014082032 2.502849911
0.4 33 0.0000245898 3.502571462 99 0.0000245779 3.502571249
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Runge-Ky 2 Sl €vident m |
g tta method that the proposed methods have a good performance com d with th
pared with the existing

CONCLUSION

1 this paper, Bum
; ’ MS have b
problt.:ms in ordin differentiarzn pl:.)posed using the boundary value technique to solve boundary layer fl
ary quations. This has been done by applying the method directly to 'u’z dizrcrcn:;;‘;
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