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Abstract

This research reports on the relationship and significance of social-economic factors (age, sex, employment
status) and modes of HIV/AIDS transmission to the HIV/AIDS spread. Logistic regression model, a form
of probabilistic function for binary response was used to relate social-economic factors (age, sex, employment
status) to HIV/AIDS spread. The statistical predictive model was used to project the likelihood response of
HIV/AIDS spread with a larger population using 10,000 Bootstrap re-sampling observations.
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1 Preliminaries

A virus has been draining the resources of the world for the past three decades and the virus is called HIV,
which stands for Human Immunodeficiency Virus. The virus damages the immune system after a period of time,
and this causes a variety of symptoms known as AIDS (Acquired immune deficiency syndrome). According to
UNAIDS/HIV [13] the pandemic of HIV and AIDS has continued to constitute serious health and socio economic
challenges globally, for more than three decades. In the underdeveloped and developing countries which includes
Nigeria. HIV/AIDS has reversed many of the health and developmental gains over the past three decades as re-
flected by indices such as life expectancy at birth and infant mortality rate among others.

The interest of this work is to model the relationship pattern that describes the way at which HIV infection varies
across gender, economic status and age-groups. Also, to determine the notable factor(s) that play major role in
transmitting the virus among people of different social and economic classes per given population, and out of the
various possible mode of transmission (PMOT), age-group, gender and economic status; we want to determine
if there is (are) any existence of individual or collective variability effect(s) of these variables to HIV infection
or otherwise. We shall verify the stability of our predictive model in order to obtain a prototype models that
will adequately describe the pattern of the spread and also predict the trends of HIV infection among person(s)
of different socio-economic classes in Oyo state. This will help the state government and other relevant non-
governmental bodies to know the age group(s) or socio-economic class that required urgent or long term plan
interventions.
1

1.1 Epidemiology of HIV and AIDS

HIV infects cells in the immune system and the central nervous system. The main type of cell that HIV infects
is the T helper lymphocyte; these cells play a crucial role in the immune system by coordinating the actions of
other immune system cells. A large reduction in the number of T helper cells seriously weakens the immune
system as HIV infects the T helper cell through the protein CD4 on its surface. HIV produces new copies of itself,
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which can then go on to infect many other cells. This process usually takes several years, see [2] for details. HIV
virus is a communicable infection, for this work we classified all possible mode of transmission (PMOT) of HIV
under the following medically confirmed activities: Sexual intercourse/ heterosexual contact, Pregnancy (mother-
child transmission), Sharp objects and Blood transfusion. Also, the social status is classified as Employed, and
Unemployed. According to Open Dictionary[10] Employment is work that you are paid regularly to do for a person
or company while Unemployed is define according to International Labour Organization[4] as active people who are
without jobs.

2 Literature Review

The logistic regression model is one of the popular statistical models for the analysis of binary data with applications
in physical, biomedical, behavioural sciences, and many others. Logistic regression analysis was implemented to
determine the significant contributory factors influencing the subject of study [9]. The cases having the response
variable as categorical, often called binary of (yes/no; present/absent; etc) and possible explanatory variables which
can either be categorical variables, numerical variables or both are numerous in the biometry, psychometric, and
epidemiology researches. In a longitudinal study of coronary heart disease as a function of age, gender, smoking
history, cholesterol level, percentage of ideal body weight, and blood pressure, the response variable yi was defined
to have the two possible outcomes: person developed heart disease during the study or person did not develop heart
disease during the study were modelled using the logistic regression model (See [9] p555-556).

L.M Raposo and et al [7] used the logistic regression model to predict resistance to HIV protease Inhibitor, the model
obtained was said to be useful in decision making regarding the best therapy for HIV positive individuals. Also,
Jinma Ren and et al [6] Risk of Using logistic Regression to illustrate exposure-response relationship of infectious
diseases, the work was suspicious of the suitability of ordinary, categorical exposures, and logarithm transformation
functions presented in logistic regression model to assess if the likelihood of infectious diseases is risk or as a result
of exposure using simulated data. However, the risk of using logistic regression is no risk at all if large
sample size is used or procedure of large sample technique such as bootstrap re sampling method
is used, this will reduce the bias in our estimates as it shall be demonstrated in this work. The odd
function is the most suitable function for interpretation of binary predictive problems [1]. 2

2.1 Data Description and Limitation

The data used in this study can be classified as secondary data because they were not generated by the investiga-
tor. Secondary data is a data collected initially for a particular purpose and it may not always provide detailed
information, which a researcher needs. The implication of this kind of problem is that the researcher will generally
resort to certain assumptions so as to fill the missing information. This reduces the scope, quality and amount of
information required for the research. Information on different variables of interests was collected from the records
of Central Blood Transfusion Service Unit Oyo State, Nigeria. Information collected is sub topic into the follow-
ings data variables: Gender (Qualitative Variable): Male/ Female, Age (Quantitative Variable), Possible Mode
of Transmission (PMOT), Employment Status (Emp): Employed / Unemployed. 400 observations of people that
randomly visit the centre for HIV test for the purpose of medical diagnosis or for the purpose of blood donation
were extracted out of the record that covers between years 2009 to 2014.

The dataset includes the Age of people that took the HIV test, so it is possible to calculate age in single years
or age-groups. Presence of HIV (HIV+) and Absent of HIV (HIV -) is measured as a simple dichotomy coded
one and zero respectively. The fact that we treat all predictors as discrete factors allows us to summarize the
data in terms of the numbers of HIV+ and HIV- in each of the five different age-groups. The reference classes of
explanatory variables (the male and the employed population) are coded 0, because they are traditionally believed
to be less susceptible to HIV infection. We cross tabulate the variable PMOT (sexual intercourse, sharp object,
mother-to-child and Blood transfusion) against age-group (0-15, 16-39, 40-54, 55-69, 70 and above in years), this
will be treated as a qusi-experimental data.
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3 Methodology

Considering the case where our response yi is a dichotomous response, when possible response is either yes or no,
death or alive, present or absent and as the case at hand in this work is either HIV negative or HIV positive.

yi = { 10
if ith individual is HIV positive
if ith individual is HIV negative

We code the present or absent of subject of study as 1 or 0 respectively. The distribution of yi is binomial of a single
trial or basically Bernoulli distribution as used by some text. The binary indicator variable outcome can only be 1
or 0 as the probability is bound between 0 and 1; this gives a sigmodial shape approaching 0 and 1 asymptotically.
This is a nonlinear problem. The logistic regression is suitable for such problem usually when response variable is
qualitative of two possible outcomes.
The logistic function relating yi to predictors which can be qualitative, quantitative or both is a very flexible model
which makes it vital to solving many epidemiology and social indicator related problems. The logistic line can also
be of form;

yi = θ0 + θ1x1 + θ2x2 + ...+ θkxk Where yi = 0, 1 (1)

E(yi) = θ0 + θ1x1 + θ2x2 + ...+ θkxk (2)

Probabilities; given p(yi = 1) = Hi and p(yi = 0) = 1−Hi, therefore

E(yi) = 1(Hi) + 0(1−Hi) = H (3)

H is probability of our subject of interest in study taking place and 1−H is the probability of subject of interest
not occurring. The subject of interest informs our choice of coding 1 or 0, in the case of an indicator variable such
as we have HIV+ is coded 1 and HIV- coded 0.
Equation (3) gives the probability yi = 1 given that level of parameter variable is Xi. Logistic regression model
is a special case of general linear model, only that its conditional probability follows a Bernoulli distribution. The
special problems associated with model having binary response variable is the problem of having our error terms not
normally distributed and heteroskadastic in nature due to the distribution of our response variable bonded between
0 and 1.

ei = yi − (θ0 + θ1x1 + θ2x2 + ...+ θkxk)
yi = 0; ε = 1− θ0 − θ1x1 − θ2x2 − ...− θkxk
yi = 0; ε = −θ0 − θ1x1 − θ2x2 − ...− θkxk

 (3.1)

ε is not normally distributed. Other problem associated with the logistic model is the constraints condition on
response function (See Michael H. Kutner and et al; Applied Linear Statistical Models Fifth Edition, p557-558).
The function form in equation (3) has its left hand-side take value ranging between 0 and 1, while the right hand-side
is not in a form that can return values between 0 and 1 asymptotically. Therefore, we require a link function to
properly link the left hand-side to the right hand-side. Link function such as identity will not be appropriate for
the initial nonlinear problem at hand. However, for easier understanding and interpretations the logit function is
usually employed. The model is initially best put in the form;

(H) = log
H

1−H
(4)

Also;

log
Ĥ(x)

1− Ĥ(x)
= θ0 + θ1x1 + θ2x2 + ...+ θkxk (5)

The interpretation of θ′s is not straightforward because increase in unit of X varies for the logistic regression model
according to the location of the starting point of the X scale (Michael H. Kutner and et al). The logit function is the
natural logarithm (In) of odds of y and taking exponential of the log of odd function gives us the most appreciable
odd function, vital in our interpretation of result. The odd function will simplify our interpretation problem.

H

1−H
= eθ0+θ1x1+θ2x2+...+θkxk (6)

Explicitly;
H = (1−H) eθ0+θ1x1+θ2x2+...+θkxk

H = (eθ0+θ1x1+θ2x2+...+θkxk −H eθ0+θ1x1+θ2x2+...+θkxk)

3



H +H eθ0+θ1x1+θ2x2+...+θkxk = eθ0+θ1x1+θ2x2+...+θkxk

H(1 + eθ0+θ1x1+θ2x2+...+θkxk) = eθ0+θ1x1+θ2x2+...+θkxk

H = eθ0+θ1x1+θ2x2+...+θkxk
1

(1 + eθ0+θ1x1+θ2x2+...+θkxk)

H =
eθ0+θ1x1+θ2x2+...+θkxk

(1 + eθ0+θ1x1+θ2x2+...+θkxk)
(7)

The inverse of the logit function is the logistic function.
Hence;

Hi = probability (0, 1/X = x) =
eθ0+θ1x1+θ2x2+...+θkxk

(1 + eθ0+θ1x1+θ2x2+...+θkxk)
(8)

The logistic function form will return the right hand-side to be property value ranging from 0 and 1. The function
increases monotonically if the gradient θ > 0 and decreases monotonically if θ < 0.
Algebraically the equation 7 or 8 is also of the form in equation (9);

exp(θ0 + θ1x1 + θ2x2 + ...+ θkxk
[1 + exp(−θ0 − θ1x1 − θ2x2 − ...− θkxk)]

[
1

exp(θ0 + θ1x1 + θ2x2 + ...+ θkxk
]−1[1 + exp(θ0 + θ1x1 + θ2x2 + ...+ θkxk]−1

[
1

exp(θ0 + θ1x1 + θ2x2 + ...+ θkxk
+ 1]−1

E(yi) = Hi = [1 + exp(−θ0 − θ1x1 − θ2x2 − ...− θkxk)]−1 (9)

3.1 Method of Estimation

The variability of the error terms variances differs at different level of X, as shown in equation (3.1) . This makes
the ordinary least square estimation ineffective in estimation of logistic function. The maximum likelihood is a
better method for estimating logistic function since logistic function predicts probabilities, and not just classes, it
can fit the probabilities for each class of our data-point, either for the class ′H ′i or

′1−Hi
′. We must also note that

the error term is not usually considered in logistic problems.

3.1.1 Maximum Likelihood Estimation

The maximum likelihood estimate is that value of the parameter that makes the observed data most likely [12]. The
values of θs that maximize loge L(θ), that is, the value of θ that assign the highest possible probability to the sample
that was actually obtained. The method of likelihood in estimating a logistic function usually requires numerical
procedures, and Fisher scoring or Newton-Raphson which often work best. Most statistical packages have the logit
numerical search procedure. In this work, R-programming language package for logistic regression for obtaining the
maximum likelihood estimates of a logistic regression is used. 3

Let y1,y2,...yk, be n independent random variables (r.v.’s) with probability density functions f(y; θ) that depends on
parameter θ . The likelihood of the joint density function of k independent observations is L(θ) = f(y1, y2, ...yk;θ).
Then;

f(y; θ) =

n∏
i=1

fi(yi; θ) = L(θ; y) (10)

The root of the equation is obtained by equating the first derivative of equation (10) to zero and the maximum
likelihood estimate (MLE) hold when the second derivative is negative.
The probability distribution function of our yi follows the Bernoulli distribution,yi = Hyi

(xi)
(1−H(xi))

1−yi with yi
taking zero or one. The likelihood function is;

L(θi) =

n∏
i=1

Hyi
i (1−Hii)

1−yi

n∏
i=1

(
H(xi)

)yi
(1−H(xi))

−yi(1−H(xi))
1
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n∏
i=1

(
H(xi)

1−H(xi)

)yi
(1−H(xi)) (11)

Recall eqn (7) H is substituted into equation (11)

n∏
i=1

 eθ0+θ1x1+θ2x2+...+θkxk

(1+ eθ0+θ1x1+θ2x2+...+θkxk )

[1− eθ0+θ1x1+θ2x2+...+θkxk

(1+ eθ0+θ1x1+θ2x2+...+θkxk )
]

yi

[1− eθ0+θ1x1+θ2x2+...+θkxk

(1 + eθ0+θ1x1+θ2x2+...+θkxk)
]

n∏
i=1

 eθ0+θ1x1+θ2x2+...+θkxk

(1+ eθ0+θ1x1+θ2x2+...+θkxk )

1+eθ0+θ1x1+θ2x2+...+θkxk−eθ0+θ1x1+θ2x2+...+θkxk

1+ eθ0+θ1x1+θ2x2+...+θkxk

yi

(
1 + eθ0+θ1x1+θ2x2+...+θkxk − eθ0+θ1x1+θ2x2+...+θkxk

1 + eθ0+θ1x1+θ2x2+...+θkxk
)

n∏
i=1

(eθ0+θ1x1+θ2x2+...+θkxk)yi

1 + eθ0+θ1x1+θ2x2+...+θkxk
(12)

Taking the natural logarithm

l(θ) =

n∑
i=1

yi θ0 + θ1x1 + θ2x2 + ...+ θkxk −
n∑
i=1

In(1 + eθ0+θ1x1+θ2x2+...+θkxk) (13)

l(θ) =
∑n
i=1 yi (θ0 + θ1x1 + θ2x2 + ...+ θkxk)− ni.In(1 + eθ0+θ1x1+θ2x2+...+θkxk)

l(θ) =
∑n
i=1 yi (

∑k
j=0 xijθk)− ni.In(1 + e

∑k
k=0 xikθk)

∂l(θ)

∂θj
=

n∑
i=1

yixij −
n∑
i=1

eθ0+θ1x1+θ2x2+...+θkxk

1 + eθ0+θ1x1+θ2x2+...+θkxk
xij

Recall equation (7) and substitute forH; the probability of subject of interest under study occurring

∂l(θ)

∂θj
=

n∑
i=1

yixij −
n∑
i=1

Hixijfor j = 1, 2, ... (14)

The differentiation of the log likelihood function in equation (13) with respect to each parameter θj will not analytical
give us the maximum likelihood estimates by setting each of the k equations in equation( 13) equal to zero. It is
a system of k nonlinear equations. The solution to the K unknown variables is a nonlinear problem cannot be
solved analytically but through numerical estimation using an iterative process. The Newton-Raphson method is
popularly used for a logistic nonlinear function. However, problem of multicollinarity may arise which is visible
when there are large estimated parameters and large standard error values. Also, convergence problem in numerical
search procedure can be associated with multicollinearity problem which can be overcome by reducing the number
of parameter variables for easy and quick convergence. For details see [8] and [9].
4

3.2 Variance Estimation Of A Logistic Function Using The Bootstrap Method

The general linear model rely on asymptotic approximations in estimating the coefficient standard errors and this
may not be reliable, just as measures such as R-square based, residual errors are not very informative and can be
misleading. Therefore, using the method of bootstrap (a re-sampling technique) will either confirm or dispel our
doubts about the sufficiency of our sample to estimate unbiased and robust estimates for the population parameters.
For our models to adequately capture the reality of HIV/AIDS spread across different socio-economical classes in
Oyo state population as likely as possible, we shall generate 10,000 Bootstrap samples from the original sample to
estimate our models parameter values and their confidence intervals. In addition to the bootstrap method we shall
also consider the multiple split sample procedure. These will help us in selecting robust parameter values for our
models. Bootstrapping technique has being identified to be effective in dealing with non-linear data with extremely
non-normal distribution. See [3].
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3.3 The Odd Function

J. M Bland and Douglas G [5] mentioned that there are mainly three reasons to use the odds ratio. Firstly, they
provide an estimate (with confidence interval) for the relationship between two binary variables. Secondly, they en-
able us to 162 A. O. Bello et al.: Application of Bootstrap Re-Sampling Method to a Categorical Data of HIV/AIDS
Spread across Different Social-Economic Classes examine the effects of other variables on that relationship, using
logistic regression. Thirdly, they have a special and very convenient interpretation. The odds are nonnegative,
with odds 1.0 when a success is more likely than a failure. According to Pedhazur [11] Odds are determined from
probabilities and range between 0 and infinity. Odds are defined as the ratio of the probability of success and the
probability of failure.

The odds of success given as H
1−H and the odds of failure would be odds (failure) given as 1−H

H . The odds of
success and the odds of failure are just reciprocals of one another. Probability and odds both measure how likely
it is that our subject of interest will occur. Notably, the sign of the log-odds ratio indicates the direction of its
relationship, the distinction regarding a positive or negative relationship in that of the odds ratios is given by which
side of 1 the odd values fall on. Odd value 1 indicates no relationship, less than one indicates a negative relationship
and greater than one indicates a positive relationship. However, in order to get an intuitive sense of how much
things are changing, we need to get the exponential of the log-odds ratio, which gives us the odds ratio itself [1].
The odd ratio of the odd for x=1 to the odd of x=0 is

The odd ratio of the odd for x=1 to the odd of x=0 is

the odd ratio =
H(1)/1−H(1)

H(0)/1−H(0)

=

 eθ0+θ1+θ2+...+θk

(1+eθ0+θ1+θ2+...+θk )

1
(1+eθ0+θ1+θ2+...+θk )

÷
 eθ0

(1+eθ0 )

1
(1+eθ0 )


=
eθ0+θ1+θ2+...+θk

eθ0

The odd ratio = exp(θ1) ∗ exp(θ2) ∗ .... ∗ exp(θk) (15)

This result obtained is the relationship between the odds ratio and an independent dichotomous. The result tells
that the odds on the event that y equals 1, increases (or decreases) by the factor exp(θ1 + θ2 + ...+ θk) among those
with x= 1 than among those x= 0. One major condition to note when interpreting for multiple logistic regression is
that the estimated odds ratio for predictor variable x assumes that all other predictor variables are held constant.

4 Results and Discussions

Figure 1 & 2: Exploratory Data Analysis for our data
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A lowess nonparametric response curve was fitted for the data (see Figure 1 and 2), the plots show a sigmoidal
S-shaped response function, and the lowess fit S-shape supported our choice of fitting a logistic regression model to
the data.

4.1 The Large-Sample Inference Procedure Results

I. Bootstrap Method Results and the Original Observation Results

Parameters

Original
observation
estimates

Log Odd
C.I.
2.5 %
97.5 %

Bootstrap
Estimate

Bootstrap C.I.
2.5 %
97.5 %

Odd
Estimate

Odd C.I.
2.5 %
97.5 %

Intercept 1.56097 0.68127228
2.49950097

1.56096913 0.447
2.623

4.7634354 1.9763907
12.176416

Age -0.07492 -0.09838407 -
0.05382945

-0.074924 -0.105
-0.047

0.9278142 0.9063008
0.9475937

Emp 1.64392 1.16798036
2.13580532

1.64391607 1.141
2.147

5.1753971 3.2154919
8.4638598

Gender 0.08356 -0.42697826
0.58909633

0.08355517 -0.4610 0.6125 1.0871452 0.6524777
1.8023589

Table 1

Figure 3
I. Bootstrap Re sampling Technique:
The numerical search converges after four iterations with a very small standard error for each parameter shown in
table 1. The residuals plotted against the predicted probability (See figure 3), shows the lowess smooth approxi-
mates a line having zero slope and intercept, and we can conclude that model inadequacy is not apparent.

The original sample confidence intervals constructed for the coefficient estimates and that of the bootstrap confi-
dence intervals coincide at almost the same intervals; they agree quite well and these demonstrate the precision of
the model coefficient estimates. The parameter estimates from the original observation and the 10,000 bootstrap
samples were asymptotically the same, thus, we can conclude within approximately 95 percent confidence that our
sample size is as sufficient as using any other larger sample size, all of our coefficient estimate are between 2.5% and

7



97.5% respectively. (See table 1). Statistically, our sample size is a good representation of the entire population
and sufficient to inferring the population characteristics.

Also, from table 1 above, the coefficient of factors Age and Emp shows great statistical significance at 0.05 level
of significance with a very small standard error values of 0.01133 and 0.246 respectively. Gender is significant but
not at 95% level of significance; however, because of the prior importance of this natural factor to HIV infections
in area of sexual intercourse, and also its significance at interaction level with Employment status (Emp.), we shall
retain the Gender coefficient in our model.

The odds ratio of HIV infection for the employed as our reference class in Emp. variable and that of the male as
reference class in variable Gender is exp (1.56097). The male gender has almost five times lesser odd of contracting
HIV compared to the female. Moreover, value 1.56097 is the log odds ratio of male with employment of a given age
contracting HIV; the employed male population in Oyo State odd ratio can also be translated to their probabilities
of contracting HIV, given by exp(1.56097)(1+exp(1.56097) ) 0.8264925.

The negative coefficient value of Age parameter suggests a negative relationship between age and HIV infection,
which imply that the probability of contracting HIV decreases as Age of person(s) increases. The odds of contract-
ing HIV given age cannot be given a direct interpretation based on the question what unit of age is appropriate and
applicable to show the change in odds ratio? The odds is best described by exp(c ∗ Age), given c is a difference of
units of ages under comparison. For the difference of unit between age 39 and 54years, the odds of contracting HIV
between age 39 and 54years is exp(15 ∗ (−0.07492)) = 0.3250423. For this we can now say the odd of contracting
HIV decreases by 33% with each additional 15 years increase in age. The inverse relationship between age and
Probability of HIV infection suggests that the younger generation below 55years should be of first priority in all
the efforts towards eradicating HIV/AIDS spread.

Also we could say that the result indicates a possibility that 33% of the infected persons in Oyo state never survived
the AIDS beyond 15years. This might be as a result of inadequate medical supports, psychological stigma and
discrimination that is still associated with HIV/AIDS infection in Africa, Oyo state inclusive. This call for the
attention of all relevant organisations to increase their support for HIV/AIDS victims, intensify campaigns against
stigmatization, discrimination of HIV/AIDS patient and also give supports such as free or subsidize antiretroviral
drugs.
Also, from the table 1 above, the odds of a unemployed person(s) in Oyo state contracting HIV are five times more
likely than that of their employed counterpart and the generally probability of unemployed population of a given
age contracting HIV is exp(1.56097+1.64392)/ (1+exp(1.56097+1.64392))=0.9610179. This result shows that the
unemployed are more susceptible to HIV.

The difference in the odds ratio of HIV infection between the female and the male individuals in the population is
1.087145(8.7%). This result implies that the odds the females in the population contracting HIV are 8. 7% than
that of the males in the population, for given age and employment status. The positive coefficient of the gender
and employment status (Emp.) variables imply that the female population in Oyo state are more likely to be HIV
infected than the male counterpart and the unemployed population more likely that the employed respectively.
Recall
RecallHi = probability (0, 1/X = x) = [1 + exp(−θ0 − θ1x1 − θ2x2 − ...− θkxk)]−1;

Ĥ = [1 + exp(−1.56097 + 0.07492Age − 1.64392Emp − 0.08356Gender)]−1 . . . . . . (16)

II Multiple Split Sample Procedure Result

5

glm(formula = HIV ˜ Age + Emp + Gender, family = binomial(link = ”logit”), data = HivAids.dat2)
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50,100,200,300 and 400

Model for 50 samples
Hi = [1 + exp(−1.35357 + 0.08088Age − 2.82061Emp + 0.23497Gender)]−1

Model for 100 samples
Hi = [1 + exp(−0.92883 + 0.06257Age − 2.28798Emp + 0.31093Gender)]−1

Model for 200 samples
Hi = 1 + exp(−1.61271 + 0.07333Age − 2.16267Emp + 0.40551Gender]−1

Model for 300 samples
Hi = 1 + exp(−1.30131 + 0.06921Age − 1.67899Emp + 0.15188Gender]−1


(17)

The equation (16) is from the 400 samples. Equation (17) was fitted from different samples of 50, 100, 200 and
300 data points respectively, their probability plots across different age is shown by figure 4; As the sample sizes
increase the closer the probabilities tends asymptotically to a sure prediction. This confirmed the central limit
theorem showing that as our sample size increases the closer we get to the true value of the unknown population
parameters estimates and the closer to the true probability. Therefore using the parameter estimates obtained from
the larger 10,000 bootstrap samples is not a bad idea.
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Figure 4
III. Model Validation

Using model for 300 samples

Hi = 1 + exp(−1.30131 + 0.06921Age − 1.67899Emp + 0.15188Gender]−1 (17)

The predictive model for Male-Employed individuals;

prob.logOdds.Male.Emp = exp(1.56097− 0.07492 ∗Age)/(1 + 1.56097− 0.07492 ∗Age)) (18)

The model prediction from the equation (18) above was obtained from the first 300 observations. We now used
equation (18) to predict Hi with i = 301to400, within our observations, using predictor variables within our obser-
vation from data point 301 to 400. We compared the predicted result with the original observation of HIV from
data point 301 to 400. The model gave correct prediction of 92 out of the 100 data points predicted. These imply
that the fitted model is more than 91% stable with less than 8 percents variations compared with the original data.
Our model has not done badly. We can now at this confidence predict the likelihood of HIV spread in Oyo State
among different gender, economic classes across all possible age.
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The predictive model for Male-Unemployed individuals;

prob.logOdds.Male.UnEmp =
exp(1.56097 − 0.07492 ∗Age+ 1.64392 ∗ 1)

(1 + exp (1.56097 − 0.07492 ∗Age + 1.64392 ∗ 1))
(19)

The predictive model for Female-Employed individuals;

prob.logOdds.Female.Emp =
exp (1.56097 − 0.07492 ∗Age + 0.08356 ∗ 1)

(1 + exp(1.56097 − 0.07492 ∗Age + 0.08356 ∗ 1))
(20)

6

The predictive model for Male-Unemployed individuals

prob.logOdds.Female.UnEmp =
exp(1.56097 − 0.07492 ∗Age + 0.08356 ∗ 1 + 1.64392 ∗ 1)

(1 + exp(1.56097 − 0.07492 ∗Age + 0.08356 ∗ 1 + 1.64392 ∗ 1))
(21)

The predicted probability plot for equation 18 , 19, 20 and 21 are as below;
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Fig 5

From figure 5, the probability plot predicts all most likely of HIV contraction for female-unemployed population
ageing below 39 years in Oyo state population as the fit is asymptotically approaching one. The model for the
male-employed takes second position with the highest probability of HIV contraction across a randomly generated
population ageing from 0 to 120 years using R sequential function (See Fig 5 for the plots).

6Manuscript* of the corresponding author: oyedele.bello@futminna.edu.ng (A. O. Bello) Published online at
http://journal.sapub.org/statistics Copyright 2015 Scientific & Academic Publishing. All Rights Reserved
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Fig 6 & 7

For the predicted probabilities of HIV infection for females that are employed compared with females unemployed,
the plot shows a increasing trend of infection with the unemployed population both in male and female gender in
Oyo state, it is notably that the plot predicted the highest trend of most likelihood of infection with the unemployed
females (see figure 6 and 7).

5 Conclusion

The age group as block effect shows adequate significant level to HIV infection with F-value 6.496 and significant
level 0.004(p<0.05). The age group 16-39 seems to be the age block that is most infected in the population, this
age group is the reproductive age and the most sexually active stage of any population which suggests that any
additional to the uncontrolled activities of sexual intercourse and pregnancy without proper medical supports will
increase the cases of mother-to- chid infection in particular. An individual will not contract HIV because he/she
belongs to a particular gender; contraction is majorly as result of activities or exposure. We recommend increment
in employment allocation, especially for the female gender in Oyo state as a vital control measure to mitigate the
spread of HIV/AIDS coupled with increase in public awareness, abstinence, and a more comprehensive approach
to preventing mother-to-child infection
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Appendix

The R-Programming Codes

file="C:/Users/AOBELLO/Desktop/XXX/HIVtwo.csv"##GENDER, AGE(23,49,31 ETC),HIV

read.csv(file) -> HivAids.dat2

str(HivAids.dat2)

attach(HivAids.dat2)

fix(HivAids.dat2)

data.frame(HivAids.dat2)

###################################

file="C:/Users/AOBELLO/Desktop/XXX/HIVtwo50samples.csv"##GENDER, AGE(23,49,31 ETC),HIV

read.csv(file) -> HivAids.dat2

str(HivAids.dat2)

attach(HivAids.dat2)

fix(HivAids.dat2)

data.frame(HivAids.dat2)

#######################################################

file="C:/Users/AOBELLO/Desktop/datawa/HIVtwo100samples.csv"##GENDER, AGE(23,49,31 ETC),HIV

read.csv(file) -> HivAids.dat2

str(HivAids.dat2)

attach(HivAids.dat2)

fix(HivAids.dat2)

data.frame(HivAids.dat2)

############################################################

file="C:/Users/AOBELLO/Desktop/XXXX/HIVtwo300.csv"##GENDER, AGE(23,49,31 ETC),HIV

read.csv(file) -> HivAids.dat2

str(HivAids.dat2)

attach(HivAids.dat2)

fix(HivAids.dat2)

data.frame(HivAids.dat2)

#############################################################

dat=as.data.frame(cbind(Age,HIV)) #

quartz(title="Age vs. HIV") #
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plot(Age,HIV,xlab="Age",ylab="Probability of HivAids Infection" ) #

g=glm(HIV~Age,family=binomial,dat) #

curve(predict(g,data.frame(Age=x),type="resp"),add=TRUE) # draws a curve based on prediction from logistic regression model

text(70, 0.8, "50 samples")

text(70, 0.8, "100 samples")

text(70, 0.8, "300 samples")

text(70, 0.8, "400 samples")

#############################

library(rsm)

HivAids2.lm <- lm(HIV ~ poly(Sex, Age,Emp, degree=1), data=HivAids.dat2)

#######################

par(mfrow=c(1,1))

HivAids2.lm <- lm(HIV ~ poly(Emp, Sex, degree=1), data=HivAids.dat2)

persp(HivAids2.lm, Emp ~ Sex,col = "green", zlab = "HIV")

HivAids2.lm <- lm(HIV ~ poly(Age, Emp, degree=1), data=HivAids.dat2)

persp(HivAids2.lm, Age ~ Emp,col = "green", zlab = "HIV",contours = list(z="top", col="orange"),

theta = 4, phi = 37, shade = 1)

HivAids2.lm <- lm(HIV ~ poly( Sex,Age, degree=1), data=HivAids.dat2)

persp(HivAids2.lm, Sex ~ Age,col = "green", zlab = "HIV",contours = list(z="top", col="orange"),

theta = 4, phi = 37, shade = 1)

boot.h

function(data, indices) {

data <- data[indices, ]

mod <- glm(formula = Kyphosis ~ Age +

Start + Number, family = binomial, data

= data)

coefficients (mod)

}

########################################################

HivAids2 <- glm(HIV ~ Age*Emp, data=HivAids.dat2, family=binomial)

HivAids2 <- glm(HIV ~ Age+Emp+Gender, data=HivAids.dat2, family=binomial(link="logit"))

summary(HivAids2)

anova(HivAids2, test="Chisq")

plot(HivAids2,which=1)

plot(HivAids2,which=2)

plot(HivAids2,which=3)

plot(HivAids2,which=4)

plot(HivAids2,which=5)

plot(HivAids2,which=6)

predict(HivAids2, type="response")

plot(predict(HivAids2),residuals(HivAids2))

abline(h=0,lty=2,col="grey")

res <- HIV(HivAids2, type = "deviance")

plot(predict(HivAids2), res,

xlab="Fitted values", ylab = "HIV",

ylim = max(abs(res)) * c(-1,1))
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abline(h = 0, lty = 2)

my.mod <- glm(HIV ~ Age+Emp+Gender, data=HivAids.dat2, family = "binomial")

summary(my.mod)

# Set up the non-parametric bootstrap

logit.bootstrapHIV <- function(data, indices) {

d <- data[indices, ]

fit <- glm(HIV ~ Age+Emp+Gender, data = d, family = "binomial")

return(coef(fit))

}

logit.boot <- boot(data=HivAids.dat2, statistic=logit.bootstrapHIV, R=1000) # 10’000 samples

logit.boot

# Calculate confidence intervals (Bias corrected ="bca") for each coefficient

boot.ci(logit.boot, type="bca", index=1) # intercept

boot.ci(logit.boot, type="bca", index=2) # Age

boot.ci(logit.boot, type="bca", index=3) # Emp

boot.ci(logit.boot, type="bca", index=4) # Gender

###########################################################

dat=as.data.frame(cbind(Age,HIV))

plot(Age,HIV,xlab="Age",ylab="Probability of HIV Infection")

g=glm(HIV~Age,family=binomial,dat) # run a logistic regression model

summary(g)

anova(g, test="Chisq")

curve(predict(g,data.frame(Age=x),type="resp"),add=TRUE) # draws a curve based on prediction from logistic regression model

points(Age,fitted(g),pch=20)

###########################################################

dat=as.data.frame(cbind(Gender,HIV,Emp,Age))

g1=glm(HIV~Gender+Age+Emp,family=binomial,dat) #

summary(g1)

anova(g1, test="Chisq")

res <- residuals(g1, type = "deviance")

plot(predict(g1), res,

xlab="Fitted values", ylab = "Residuals",

ylim = max(abs(res)) * c(-1,1))

abline(h = 0, lty = 2)

library(popbio)

logi.hist.plot(Age,HIV,boxp=FALSE,type="hist",col="gray")

#######################################################

dat=as.data.frame(cbind(Gender,HIV,Emp,Age))

g2=glm(HIV~Gender+Age*Emp,family=binomial,dat)

summary(g2)

anova(g2, test="Chisq")

confint(g2)

exp(coef(g2))

exp(confint(g2))

res <- residuals(g2, type = "deviance")
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plot(predict(g2), res,

xlab="Fitted values", ylab = "Residuals",

ylim = max(abs(res)) * c(-1,1))

abline(h = 0, lty = 2)

##########################################

plot(g2$fitted)

abline(v=30.5,col="red")

abline(h=.5,col="blue")

abline(h=.6,col="green")

text(15,.9,"seen = 0")

text(40,.9,"seen = 1")

ggplot(HivAids.dat2, aes(x = Gender, y = HIV, colour = Age, group = Age)) +

geom_line()

plot(predict(g2),residuals(g2))

abline(h=0,lty=2,col="grey")

###############################################

library(popbio)

logi.hist.plot(Age,HIV,boxp=FALSE,type="hist",col="gray")

glm.out = glm(HIV ~ Gender + Emp + Age, family=binomial(logit), data=HivAids.dat2)

summary(glm.out)

Age = seq(from=0, to=120, by=10)

logOdds.M.Emp = 1.56097 -0.07492*Age

logOdds.F.Emp = 1.56097 -0.07492*Age + 0.08356*1

logOdds.M.UnEmp = 1.56097 -0.07492*Age + 1.64392*1

logOdds.F.UnEmp = 1.56097 -0.07492*Age + 0.08356*1 + 1.64392*1

prob.logOdds.M.Emp = exp(logOdds.M.Emp)/(1+ exp(logOdds.M.Emp))

prob.logOdds.F.Emp = exp(logOdds.F.Emp)/(1+ exp(logOdds.F.Emp))

prob.logOdds.M.UnEmp = exp(logOdds.M.UnEmp) /(1+ exp(logOdds.M.UnEmp))

prob.logOdds.F.UnEmp = exp(logOdds.F.UnEmp) /(1+ exp(logOdds.F.UnEmp))

windows()

par(mfrow=c(2,2))

plot(x=Age, y=prob.logOdds.F.UnEmp, type="l", col="red", lwd=2,

ylab="Pr(Y=1)", main="predicted probabilities for Unemployed Female")

plot(x=Age, y=prob.logOdds.M.UnEmp , type="l", col="blue", lwd=2,

ylab="Pr(Y=1)", main="predicted probabilities for Unemployed Male")

plot(x=Age, y=prob.logOdds.F.Emp, type="l", col="orange", lwd=2,

ylab="Pr(Y=1)", main="predicted probabilities for Employed Female")

plot(x=Age, y=prob.logOdds.M.Emp, type="l", col="green", lwd=2,

ylab="Pr(Y=1)", main="predicted probabilities for Employed Male")

windows()

plot(x=Age, y=prob.logOdds.F.UnEmp, type="l", col="red", lwd=1,

ylab="Pr(Y=1)", main="predicted probabilities of HIV infection among Female$Status")

lines(x=Age, y=prob.logOdds.F.Emp, col="blue", lwd=1)

text(100, 0.9, "Unemployed Female", col="red")

text(100, 0.8, "Employed Female",col="blue")

windows()

plot(x=Age, y=prob.logOdds.M.UnEmp, type="l", col="red", lwd=1,

ylab="Pr(Y=1)", main="predicted probabilities of HIV infection among Male$Status")

lines(x=Age, y=prob.logOdds.M.Emp, col="blue", lwd=1)

text(100, 0.9, "Unemployed Male", col="red")

15



text(100, 0.8, "Employed Male",col="blue")

legend("topright", legend=col

windows()

plot(x=Age, y=prob.logOdds.F.UnEmp, type="l", col="red", lwd=1,

ylab="Pr(Y=1)", main="predicted probabilities of HIV infection")

lines(x=Age, y=prob.logOdds.M.UnEmp, col="blue", lwd=1)

d;pd;;de;

"Employed Female", "Employed Male"), lty=c("solid", "solid", "dotted",

"dotted"), lwd=c(1,1,2,2), col=c("red", "blue", "red", "blue"))

##################################################################################

Validity#######

file="C:/Users/AOBELLO/Desktop/XXXX/validate.csv"##GENDER, AGE(23,49,31 ETC),HIV

read.csv(file) -> HivAids.dat2

str(HivAids.dat2)

attach(HivAids.dat2)

fix(HivAids.dat2)

data.frame(HivAids.dat2)

HivAids.model = 1.30131 -0.06921*Age + 0.15188*Gender + 1.67899*Emp

HIV

prob.Odds.HivAids.model = exp(HivAids.model)/(1+ exp(HivAids.model))

round(prob.Odds.HivAids.model)

round(prob.Odds.HivAids.model, digit=0)

signif(prob.Odds.HivAids.model,digit=0)
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