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ABSTRACT
One of the major challenges in activity recognition task is
the need to adapt a classification model during its opera-
tion. This is important because the underlying data distri-
bution between those used for training and the new evolving
stream of data may change during online recognition. The
changes between the two sessions may occur because of dif-
ferences in sensor placement, orientation and user character-
istics such as age and gender. However, many of the existing
approaches for model adaptation in activity recognition are
blind methods because they continuously adapt the classi-
fication model without explicit detection of changes in the
concepts being predicted. Therefore, we propose a concept
change detection method for activity recognition under the
assumption that a concept change in the model of an activ-
ity is followed by changes in the distribution of the input
data attributes as well which is the realistic case for activity
recognition. Our change detection method computes change
detection statistic on stream of multi-dimensional unlabelled
data that are classified into different concept windows. The
values of the change indicators are then processed for detect-
ing peak points that indicate concept change in the stream
of activity data. Evaluation of the approach using real ac-
tivity recognition dataset shows consistent detections that
correlate with the error rate of the model.

Categories and Subject Descriptors
H.5.2 [User/Machine Systems]; I.5 [Pattern Recogni-
tion]: Metrics—Percentage Accuracy
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1. INTRODUCTION
Smartphone for activity recognition employs inertial sen-

sors such as tri-axial accelerometer or gyroscope to infer ac-
tivities of users. The accelerometer measures the amount of
acceleration forces experienced by the device along x, y and
z axes. The patterns of acceleration forces experienced by
the device correspond to the intensity of the activity being
carried out by the phone possessor. The basic procedure
for mobile activity recognition involves: i) collection of la-
belled data from the subjects that perform sample activities
to be recognised ii) classification model generation by using
collected data to train and test classification algorithms iii)
a model deployment stage where the learnt model is trans-
ferred to the mobile device for identifying new unseen activ-
ities data. This traditional approach for activity recognition
performs the model generation phase on remote systems and
transferred the generated model to the phone to recognise
new user activities. The drawback of this approach is that
the model is static and does not reflect possible changes in
the distribution of new evolving data. Another approach
that aims to eliminate this, induced the model by using the
user self-annotated data on the phone so that the model can
be tuned to individual user.

The two approaches are still not immune from changes
that may occur in the underlying distribution of the unseen
incoming data. This usually results into decreasing perfor-
mance in accuracy of the model. Thus, for example, a model
that is trained to recognise walking activity given a specific
data may take a new data from another slightly different dis-
tribution that correspond to say jogging for another user and
classify it as walking. At this point the model has suffered
from the phenomenon call concept change. The sources of
change can be known or unknown. But for activity recogni-
tion problem, it has been shown to be caused by a number of
factors such as dissimilarities between the user profiles used
during training and the users using the model during recog-
nition [11, 10]. It may also be caused by the displacement
of the sensors and orientation effect on the sensor readings
[4, 15].

Hence, various approaches have been developed for model
adaptation during their online operation. Many of these ap-
proaches [17, 11, 1] are blind in the sense that they do not
identify concept changes before they start the adaptation
process. In the field of stream mining, a related problem
exists and two approaches have been identified for handling
concept drift. We have the informed and uninformed han-



dling techniques [8]. The informed concept drift adaptation
approach attempts to react to the occurrence of concept
drift by ensuring that the drift point is detected before tak-
ing any action whereas, the uninformed handling of concept
drift is proactive and does not have any explicit detection
mechanism. Rather, it incrementally and continuously up-
dates the model at each time step a sample or set of samples
are integrated into the model. The drawback of uninformed
adaptation is that they react slowly to concept drift and
consumes system resources as it continuously adapts the old
concept which may be required to be replaced out-rightly
or maintained without adaptation [8]. Hence an informed
adaptation scheme is better and required for better man-
agement of concept drift.

Furthermore, many of the approaches[7, 14] for the detec-
tion of concept drift require the presence of labels to detect
the change. However, this assumption of label availability
is not realistic in the domain of activity recognition because
labels are not easy to come by during online recognition
as the user will be required to provide label for each ac-
tivity being performed. This is impractical and tedious to
do. Hence our approach based on unsupervised detection
eliminates the need for ground truth to detect changes that
caused decrease in the accuracy of the recognition model.

The rest of this paper is organised as follows: Section 2
examines the existing methods for concept change detection;
Section 3 presents our new method; Section 4 describes the
experiment and the datasets used for evaluation while the
results are presented in Section 5. Finally, the paper is con-
cluded in Section 6.

2. CONCEPT DRIFT DEFINITION
Concept drift or change is a phenomenon in classifica-

tion problem where a classifier built to recognize certain
concepts from set of training data becomes inaccurate over
time because the distribution of the data being classified has
changed from the initial distribution known to the model [8].
The changes in the data can manifest either as changes in
the class label or changes in the attributes of the new unob-
served samples. Changes in the class labels can occur while
the attributes themselves remain unchanged. That is, given
a sample with a class label say ’0‘, when changes occur the
same sample now has label ’1‘. On the other hand, the at-
tributes of the data may change while the class labels remain
unchanged. The two parts of the data can also change si-
multaneously. In the first and third situations, the classifier
will need to be updated with the new emerging distribution
of the data while the second situation may or may not affect
the decision boundary and hence may not require model up-
date. Another possible but infrequent change is the change
in the prior probabilities of classes termed concept evolu-
tion that result in emergence of new concepts or merging of
existing concept [12].

More formally, concept drift arises as a result of differ-
ences in the relationship between input variable x any tar-
get variable y between two points in time t0 and t1 i.e.
P (x, y)t0 6= P (x, y)t1 where x ∈ Rn are the input attributes
and y ∈ {yi : i = 1...c number of classes}. The changes in
this relationship can manifest in the form of changes in the
class conditional probability P (x/y) where the attributes
values changes for given yi but the class label y remains
unaffected or it may result in posterior probability p(y/x)
changes which means the attributes remain unchanged but

the class labels changed or there could be a simultaneous
changes in posterior and class conditional probability. It is
also possible to have prior probability changes leading to
emergence of new concepts.

Table 1: Categories of Drift

Types of
Drift

Notation Comment

Real Drift p(y/x)t0 6=
p(y/x))t1

This drift affect the
decision boundary

Virtual
Drift

p(x/y))t0 6=
p(x/y))t1

Does not affect the
decision boundary

Virtual
Drift with
Decision
Boundary
Change

p(x/y))t0 6=
p(x/y))t1 and
p(y/x)t0 6=
p(y/x))t1

Simultaneous drift
in class conditional
probability and pos-
terior probability
which affects the
decision boundary.

Concept
Evolution

p(y)t0 6= p(y)t1 Concept evolution
results in emergence
of new classes other
than the known
classes.

Change that arises from p(y/x) is regarded as real concept
drift, while that of p(x/y) is referred to as virtual drift. The
virtual drift can also occurred when both p(x/y) and p(y/x)
changes simultaneously. The changes in p(y) is referred to
as concept evolution.

The following are some of the existing change detection
methods in the literature: Online Cumulative Sum Test [13]:
It is a sequential test that can be applied on stream of nu-
merical data to detect change point. The test monitors the
cumulative sum of the attribute of the data stream such
as the mean or the error rate of a classification model and
alert a change when the value exceeds a pre-set threshold
γ. Specifically, the test begins by initializing the sum of
the target value to 0. i.e. S0 = 0, then computes the cu-
mulative sum after receiving each observation xi as Si+1 =
max(0, Si + xi − ξ) where ξ allowed magnitudes of change.
The efficacy of this approach depends on the choice of the
parameters of the test.

Page Hinkely Test: This is a sequential test for change
point detection originally devised by Page in 1954 for change
detection in signal processing [13]. The approach is similar
to CUSUM but rather than computing cumulative sum, it
computes two test statistics, the cumulative difference be-
tween the observed values and their mean up till the mo-
ment of the test defined as cT =

∑T
t=1(xt − x − θ), where

x = 1
T

∑T
1 xt and θ is the accepted magnitude of tolerable

changes and the minimum of ct defined as Ct = min(ct, t =
1...T ). The two parameters are compared as PHtest =
ct − CT and if the result is greater than a threshold ζ a
change is signalled.

Methods based on Statistical Process Control: These meth-
ods unlike other sequential approach consider the system be-
ing monitored as a process and try to monitors the normal
operation of the process from unwanted variations. Once the
variation of the process is beyond the acceptable threshold
a drift alarm is signalled. Notable methods of process con-
trols include P-charts, X-chart, R-chart, CUSUM chart and
a host of other process control charts. An often cited work



that considers learning as a process and applied the princi-
ples of process control to concept change detection include
DDM [7, 9] . The methods monitors the performance evo-
lution of a classifier and relies on the availability of ground
truth to determine when the classifier gives a correct or in-
correct prediction. The method incrementally computes the
proportion of errors produced by the current model with
pi = pi−1 +(x−pi−1)/n with x =1 if the prediction is incor-
rect and x=0 if the prediction is correct. The average error
is thus computed incrementally. The standard deviation of
the error rate si at each time step of the learning process is
also computed. Two register pmin and smin are maintained
and they are updated with pi and si respectively whenever
pi + si < pmin + smin. DDM has two thresholds to take
decision on the drift: if pi + si ≥ pmin + 2 ∗ smin it im-
plies a warning level. Subsequent examples after this point
are stored in anticipation of a possible change of concept. If
pi+si ≥ pmin+3∗smin a drift level is signalled after a series
of warning state concept drift is declared, the model induced
by the learning method is reset and a new model is learnt
using the examples stored since the warning level triggered.
The values for pmin and smin are reset to 0. The intuition
behind this method is that, in the absence of concept drift
the error rate should decrease indicating a stationary distri-
bution. However, if the error rate increases significantly it
means the classifier is no more in tandem with the distri-
bution of the data. Thus a concept drift has occurred and
the model has to be rebuilt. Authors in [3] extends DDM
to account for the distance between error points while [6]
used DDM as a component for their adaptation algorithm
to make them informed.

3. UDETECT METHODS FOR CHANGE DE-
TECTION IN MULTI-CLASS MODEL IN
ACTIVITY RECOGNITION

This section presents our new proposed method for change
detection in activity recognition. The method does not as-
sume the presence of ground truth with each arrival of new
unseen sample to be classified. Hence, it reflects a realistic
scenario for detecting concept change in activity recogni-
tion where the stream of activity data being classified does
not usually comes with ground truth label. The method
transform a multivariate data stream to univariate detec-
tion stream.

The multidimensional training data which, are taken as
the reference data that represent the normal activity of the
users are sorted into separate classes. The data in each
class are converted into uni-dimensional stream of data by
segmenting them into windows of equal sizes and compute
the change statistics (xd) from each window. The change
statistic from each window is the average distance to the
centre of each window computed according to Equation 1.
These values are then subsequently used to compute the
parameters of the Shewart Control Charts [16] a statistical
process control method.

The chart is made up of two charts; the individual ob-
servation and the moving range of the observation charts.
The moving range chart is constructed by computing the
moving range of two successive change statistics as mRi =
|xd(i) − xd(i−1)| . The mean mR of the ranges are also com-
puted. This value is then used to compute the with upper
control limit as 3.27mR. This upper limit indicates the ac-

ceptable level of drift which, the new observations should
not exceed. Similarly, control chart for the individual change
statistics xd, is constructed using average range value mR to
compute upper control limit as xd + 2.66mR and the lower
control as xd − 2.66mR. Afterwards, these parameters were
used to monitor the statistic computed from the new batches
of unseen data in order to detect concept change points.

Once the parameters of the charts have been computed
using the reference training data, a nearest neighbour based
classifier [5] that was trained on the data was used to recog-
nize activity from new set of test data. Figure 1 shows the
architecture of our detection method. As the pre-trained
model classifies data samples, they are kept in a buffer .
Then, the samples from the buffer are transmitted to the
detection windows dedicated to each class from which the
change statistic is computed on equal size amount of win-
dow data. The values are then charted on the existing charts
to detect out of control points that indicate the model mis-
classification rate is increasing beyond control.

Intuitively, if the classifier is not misclassifying samples
to a class, the distribution of the attributes in the samples
classified to the same class should be stable. It should be
noted that changes in concept in activity recognition does
not only manifest in the change in class label but also si-
multaneous changes in the distribution of the attributes and
the label. A change in the distribution of the samples classi-
fied to the same class is evidenced if the value of computed
change statistics of the new samples deviate significantly
from that of the referenced training data set. Our method
relies on this assumption and monitors the parameters com-
puted from the batches of data that are classified to the same
class. If this parameter is within a threshold no change is
detected but if this parameter exceeds a threshold a change
is signalled in the class of data. Hence the method can pre-
cisely localize the part of the model that need to be updated
rather than updating the entire classifier.

xd =

∑n
1=1Euclidean(X(i),WindowCenter)

n
(1)

where X(i) ∈ Rn are the instances in the window and Win-
dowCenter is defined as the centroid of the data in the win-
dow computed as:

WindowCenter =

∑n
1=1X

(i)

n
(2)

n being the size of the window and Euclidean(E) between
two vectors a and b ∈ Rn is computed as:

E(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + ...+ (an − bn)2 (3)

In another words, the distribution of correctly classified
samples of a class should correlate with the distribution of
the training data for that class. The changes in the distri-
bution of test examples indicated by out of control limits on
the chart is an indication that the model is misclassifying
the samples and therefore the model needs to be reviewed.
The revision carried out on the model depends the under-
lying assumption of the recognition process. Two scenarios
can be envisaged. The first is to assume that new data that
signal the change detection are outliers that should be dis-
carded and indicate that the model need to be fine-tuned to
continue in its original settings. All that is required is to
identify the causes of the variation from the normal s be-
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Figure 1: Change Detection Architecture for Multi-Class Activity Recognition

haviour. The variation in such situation can be caused by
sensor misplacement or fault. In this case, the cause of the
variation should be eliminated i.e. by replacing the faulty
sensor. The second possible scenario is to assume that the
data at the change points reflect the current situation of
the user that is using the model and in this case the model
should be reviewed to suit the new distribution. Thus, the
model will need to be adapted by making use of model adap-
tation technique. Many adaptation techniques are available
in the literature. It is out of scope of this paper to deal with
adaptation of the model.

4. EXPERIMENT
The aim of this experiment is to examine the efficacy of

our change detection approach in detecting changes between
the distribution of training data used to train a model and
the new examples being classified by the models.

To carry out this experiment, we have employed an activ-
ity recognition dataset that is based on accelerometer and
gyroscope sensors of mobile phones. The dataset has charac-
teristics that enable us to assess the applicability of our ap-
proach. The dataset is obtained from different subjects and
marked appropriately to distinguish one subject data from
another. The Human Activity Recognition Using Smart-
phone Dataset [2] is collected from a set of 30 volunteers
who are within an age bracket of 19-48 years. Each sub-
ject performed six designated activities of walking (class-0),
walking-upstairs (class-1), walking-downstairs (class-2), sit-
ting (class-3), standing (class-4), and laying (class-5) while
wearing a smartphone attached to their waists. The data
were obtained from gyroscope and accelerometer sensors of
the smartphone. Each data sample in the dataset is rep-
resented by 561 features containing both time domain and
frequency domain features and a corresponding activity la-
bel. The features were obtained from 128 fixed-width sliding
windows of 2.56sec with 50% overlap.

The first part of the experiment focused on identifying the
level of differences among the individual subject data. We

performed a cross-user model evaluation. This is done by
using one user data for training and another user data for
testing. This is repeated for each of the user data in the
dataset one after the other.

In the second stage of the experiment, we detected changes
between training data and new unseen data during activity
recognition. To do this, we employed the data of one user for
training and another subject data for evaluating the change
detection. We used a known amount of one user data as
training data to create a bespoke up-to date model. The
training and the test data are then combined and passed
to the model so that if there are differences between the
distributions of the activity data between the users which,
cause model misclassification, our method should be able to
identify the change points after the first user data. Hence,
the first set of data to test are from the original user while
the rest are from another user.

5. RESULTS
We present the result of the experiment performed us-

ing the datasets mentioned above. The accuracies of using
one user as training are listed against other individual user’s
data as testing in the columns of Table 2. In an ideal situa-
tion, where the pattern of performing similar activity is the
same between any two users, the accuracy should be very
high. However, if the pattern of performing similar activity
between users is not the same the accuracy will be low.

Table 2 shows the results for the first set of 5 users. We
can observe from the result that the accuracy of within user
model where the same user is used for training and testing
the model is the highest across all users. The levels of accu-
racy between a user and other set of users vary from user to
user and this indicate that there is a difference in pattern in
how users perform similar activity. User with dissimilar ac-
tivity profiles have lower accuracies while those with similar
profiles have higher accuracies.

The second phase of the experiment evaluates our change
detection method in detecting the variations between one



(a) Class 0 Chart (b) Class 1 Chart

(c) Class 2 Chart (d) Class 3 Chart

(e) Class 4 Chart (f) Class 5 Chart

Figure 2: Chart of Window Parameters for Each Class of Activity User 19 Against 14



(a) Class 0 Chart (b) Class 1 Chart

(c) Class 2 Chart (d) Class 3 Chart

(e) Class 4 Chart (f) Class 5 Chart

Figure 3: Chart of Window Parameters for Each Class of Activity User 30 Against 2



Table 2: Cross User Data Classification Accuracy

ID 1 ID 2 ID 3 ID 4 ID 5
16 64.48% 10 68.03% 10 63.27% 14 62.85% 14 57.28%
14 67.80% 19 70.00% 19 66.94% 30 64.75% 9 58.68%
28 69.11% 4 71.92% 8 69.04% 9 68.06% 21 62.50%
18 70.88% 7 72.40% 9 69.79% 10 68.71% 16 62.57%
20 71.75% 18 72.53% 14 72.14% 16 69.95% 24 64.83%
6 72.00% 14 72.76% 18 72.80% 20 73.16% 30 65.27%
5 75.17% 30 74.15% 16 73.50% 22 73.52% 28 66.49%
10 75.17% 9 75.00% 30 76.24% 28 74.87% 20 67.23%
19 75.28% 3 75.37% 20 76.27% 8 76.16% 18 67.58%
9 75.35% 8 75.80% 15 76.52% 19 76.67% 8 67.97%
2 75.50% 23 77.69% 28 76.70% 6 76.92% 13 70.03%
24 75.59% 28 78.27% 29 78.49% 17 77.17% 7 70.78%
21 76.72% 20 78.53% 6 80.31% 29 77.33% 10 71.43%
22 77.57% 12 79.38% 4 81.07% 7 78.57% 17 72.55%
17 77.99% 29 79.94% 5 81.79% 11 79.11% 3 73.31%
30 78.59% 6 80.00% 17 82.88% 18 79.12% 29 74.42%
8 79.00% 16 80.60% 22 83.49% 23 80.38% 12 74.69%
12 79.06% 17 82.34% 11 83.54% 15 81.10% 23 75.81%
25 79.08% 5 82.78% 25 84.18% 1 83.00% 1 76.66%
26 79.08% 11 82.91% 26 84.18% 12 83.13% 22 78.82%
4 80.44% 15 82.93% 23 85.22% 21 83.33% 11 80.70%
11 81.33% 1 83.86% 2 86.75% 2 86.09% 2 80.79%
23 81.72% 13 84.10% 13 86.85% 13 87.16% 15 81.10%
7 83.44% 25 84.95% 1 88.76% 24 87.40% 4 83.60%
3 86.51% 26 84.95% 12 89.38% 25 88.01% 19 84.17%
15 88.72% 24 86.09% 24 89.50% 26 88.01% 25 84.95%
27 89.63% 22 87.23% 21 90.20% 5 89.40% 26 84.95%
13 90.21% 21 87.25% 27 90.43% 3 89.74% 6 85.54%
29 93.60% 27 89.36% 7 90.91% 27 92.02% 27 88.03%
1 100.00% 2 100.00% 3 100.00% 4 100.00% 5 100.00%

user and another user data. The results obtained show cor-
relations between the chart of the change statistics and the
level of model accuracy in recognizing the various activity
types of new users. Figure 2 -3 show the samples of the
change detection charts.

The data plotted are the change statistics computed from
the batches of data samples coming from the moving win-
dows designated for each class of activity being recognised.
We utilized a batch size of 3 to compute the sample statistics
for all the experiments. Each type of activity has its own
dedicated window for detecting the variability in the data
classified to the class. This variability indicates the rate of
misclassification in the window. The charts show this by
out of control points indicating non-uniformity in the data
classified to the same window. The charts also indicate the
change points by means of out of control points. A change
point indicates the point where different classes of data other
than the original class begin with a threshold of delay.

Table 3: Proportion of Error Per Class

Class0 Class1 Class2 Class3 Class4 Class5

Exp. 1 0.15 0.49 0.00 0.32 0.26 0.00

Exp. 2 0.10 0.00 0.45 0.19 0.11 0.00

Sample results from the experiment are presented in Fig-
ure 2 and 3. The charts in Figure 2 is obtained by setting
the data of user with ID 19 as training set while the combi-
nation of user 19 and 14 are set as test data. The first 360
samples of the testing data belong to user 19 while the re-
maining 323 data points of the total 683 belongs to user 14.
We noted this demarcation points to be able to identify the
peak points in the sequences of plotted values for detecting
the changes between the two data.

Figure 2a, show the chart of sequence of the individual
change statistics obtained from the samples classified into
window of class 0 in the upper part while the lower part
of the figure indicates the moving range of the values. A
change is detected at the time step 489 on the individual
chart. This is the point where the computer sample statis-
tic exceeds the upper control limit. This indicates the point
where the distribution of the data changes from the initial
data distribution. It also indicates that the samples around
these time steps are misclassified which makes their com-
puted statistic goes out of control limit. The more the out
of control points the more the proportions of the misclas-
sified samples that are classified into this window. Table
3 shows the proportions of misclassification for each class.
We can see that there is classification error of 0.15 in this
class. This error rate is computed looking at the amount of
incorrectly classified samples to the class.

Similarly, changes are detected in the activity types 1,
3 and 4 shown in Figures 2b, 2d, and 2e respectively. The
change points are indicated by the out of control limit points
in the individual chart and moving range chart. The changes
detected show the variation in the activity of the initial user
and the test user data. The proportions of misclassified
samples in these classes as shown in Table 3 corroborate the
non-homogeneity of the data that are classified to the win-
dow dedicated for each class. Thus the approach is able to
detect changes in the distribution of the initial user data that
belongs to the original activity and those that comes from
another user. It should be noted that points after the change
points that are within control limits indicate instances from
test data have the same and correct class as the initial train-
ing data. There is no detection of change in the activity class
2 and 5. This is evident by the absence of out of control
points in the two charts for the two classes. This is because
there is no variability in the training data of the user and
the test data from another user and hence the proportions of
their misclassified samples are 0 for each of the two classes
as shown in Table 3.

The second experiment result charts in Figure 3 are ob-
tained by setting the user 30 data as training set and com-
bination user 30 and 2 as test data. The first 383 samples of
the testing data belong to user 30 while the remaining 302
data points of the total 685 belongs to user 2. The same ob-
servations are recorded as in the sample experiment 1. The
changes detected correlate with the proportion of error in
the misclassified samples in each of the window dedicated
for each class of activity. This implies that the distribution
of the test data has changed for some part of the test data.

Changes are detected in activity types 0, 2, 3 and 4 while
no change is detected in activity types 1 and 5. These
are shown in Figure 3a-f. The detected changes in classes
0,2,3 and 4 are corroborated by the misclassification levels
of 0.1, 0.45, 0.19 and 0.11 obtained for each of the activ-
ity type respectively. The non-change classes 1 and 5 have



misclassification rate of 0. This implies that the more the
misclassification levels observed from the windows dedicated
to each activity, the more the changes that are detected.

It should be noted that the individual chart is the main
chart that indicates changes. The moving range chart is
meant to corroborate the detections. Once the individual
chart detects the change there is no need to look at the
range chart. But if the range chart detects the change we
have to confirm from the individual chart before taken a
decision on the admissibility of the change detected.

6. CONCLUSION
This paper presented a novel concept change detection

method for activity recognition. The method is based on
processing chunks of data classified to the same class and
extract the change statistic value that characterised each
chunk. The average distance to centre parameter computed
from each batch are monitored by using Shewart Control
Charts as the change point detector to identify outlier peaks
that represent the drift point. Such points indicate that
the model is misclassifying the samples to the wrong class
and thus need to be diagnosed to react to drift. The main
benefits of this method compared to the traditional drift
detection approach in data stream domain is that it does
not rely on the ground truth to detect drift in the data and
thus is more realistic approach for activity recognition.

The method is evaluated using real activity recognition
dataset obtained from smartphone of diverse subjects who
perform the designated activity. The result indicates that
the method can identify the precise drift point in the data.
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