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Abstract

This work explores the use of the pseudo-rigid-body model to predict the dynamic
behavior of compliant mechanisms. Based on the principle of dynamic equivalence, a
simplified dynamic model for the compliant slider mechanism was developed using the
pseudo-rigid-body modeling technique. Simulation results shows a very interesting
discovery that there exist a range of frequencies over which the compliant slider
mechanism exhibits better constant-force behavior than it does statically. For instance,
at a frequency of 51 rad/s the compliant slider mechanism yields a median force of
307.62N with a force variance of £3.9N, which is much better than the +19.2N the

device demonstrates statically.
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Introduction

Compliant mechanisms are mechanical
devices which provide smooth and controlled
motion guidance due to the deformation of
some or all of the mechanism's components,
they rely upon elastic deformation to perform
their  function of transmitting and/or
transforming motion and force (Her and Midha
1987). Such mechanisms, with built-in flexible
segments, are simpler and replace multiple
rigid parts, pin joints, and add-on springs.
Compliant mechanisms are relatively new
class of mechanism (Kota et al. 1999). They
may be multi-piece devices or monolithic
(single-piece) devices and do not require
sliding, rolling or other types of contact
bearings often found in rigid mechanisms.

The pseudo-rigid-body model provides
an easy way to model the complex nonlinear
deflections of many compliant mechanisms
(Howell 2001). The model approximates the
force-deflection characteristics of a compliant
segment using two or more rigid segments
joined by pin joints, with torsional springs at
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the joints modeling the segment’s stiffness
(Jensen and Howell 2003). The usefulness of
the pseudo-rigid-body model in allowing
accurate analysis and synthesis of mechanism
motion and energy storage characteristics has
been abundantly demonstrated (Opdahl et al.
1998; Derderian et al. 996; Howell and Midha
1996; Lyon et al. 1997; Jensen et al. 1997;
Mattlach and Midha 1996). While the model is
very useful for the analysis of compliant
mechanisms, its true power lies in the
capability it gives for designing original
compliant mechanisms (Jensen et al. 1997).
This work explores the use of the pseudo-rigid-
body model to predict the dynamic behavior of
compliant slider mechanisms.

Dynamic Model Development

Mechanism Description

Figure 1(a) shows the compliant slider
mechanism which consists of rigid links joined
by small-length flexural pivots. Dividing the
mechanism along the line of symmetry shows
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that it consists of a pair of compliant slider
mechanisms mounted to the same ground and
sharing the same slider. Having two
mechanisms opposite each other is useful
because each cancels the moment induced by
the other and the issue of friction between
slider and ground is eliminated.

Fig. 1. (a) The compliant slider mechanism;
and (b) its pseudo-rigid-body model.

Pseudo-Rigid-Body Model of Mechanism

The pseudo-rigid-body model of the
compliant slider mechanism is shown in Fig.
1(b); only half of the symmetric mechanism is
shown. The mechanism is converted to its
rigid-body counterpart by using the pseudo-
rigid-body model rule for small-length flexural
pivots. The most straight forward alteration is
that every small-length flexural pivot becomes
a pin and torsional spring combination,
centered at the middle of the flexible segment.
The torsional spring constant K for small-
length flexural pivots is given by

EI
K==, 1
7 (1)
where:

I is the moment of inertia of the cross section
of the flexible segment;
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E is the modulus of elasticity of the flexible
segment;
L is the length of the flexible segment.

As seen in Fig. 1, application of the
pseudo-rigid-body  model rule to the
mechanism does not result in a significant
redistribution of its mass. Accordingly,
dynamic inertial forces on the mechanism are
reasonably consistent between the compliant
mechanism and its pseudo-rigid-body model. It
is assumed that no plastic deformation occurs
as the mechanism cycles and the flexible
segment deflects.

Position Analysis of Model

Figure 2 shows the position vector loop
of model. Using complex number analysis, the
vector loop equation is given as
R,+R,—R =0. ()

Fig. 2. Position vector loop of model.

Substituting the complex  number
equivalent for the position vectors, the
following equation is obtained:

re'” +re’” —re’™ = 0. 3

Substituting Euler equivalents, Eqg. (3)
becomes:
r,(cos@, + jsiné, )

+7,(cosé, + jsing;)

—r,(cos@, + jsind.)=0. (4)
Separating real and imaginary components and

further simplifying, the following relations are
obtained:

¥, =1,C086, +r,C0S0;, (5)
sind, = —2sing,, (6)
I3
cosd, :lw/rf—r;sinzez : (7)
13
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Velocity Analysis of Model

Differentiating Eq. (3) with respect to
time and noting thatr,,», and &, are constants,
and 7 varies with time, the following equation
is obtained:

Jjre’’ 92+ jre’® 05—?1 =0, (8)

where: fl = linear velocity of the slider.
Substituting Euler equivalent, Eq. (8) becomes:

jr,(cos6, + jsiné,)o,

+ jr,(cos @, + jsin,)0,—r, =0. (9)
Simplifying Eq. (9), gives
r,(=sin@, + jcos6, )0,

+r,(=sin6, + jcosd, )0, r, =0. (10)

Separating real and imaginary components and
simplifying gives the following relations:

6. —__ T 6, cosd, (11)
3 ’
it —rfsin? 6,
: : 2 9 i
r =1, 0,sin0, - r, 8,sin 6, cosd, 12

rp —r}sin? g,
Equation (8) is the velocity difference equation
which is given as:
Vo + Ve =Viuper =0, (13)
Veter =V + Vs, . (14)
The absolute velocity of link 2 and the

velocity difference of link 3 with respect to
link 2 is obtained from Eqg. (13), and given as:

V, = jre 6, (15)
Vap = j’”sejga 93 ) (16)
Voumer = j’"zejaz ‘92"‘ j”sejHB 93 . (17)

The absolute velocity of the centre of
mass of link 2 is therefore:

V., = j%ej92 0,. (18)
Substituting Euler equivalent and simplifying,

EqQ. (18) becomes:

1 .
Ve, = Erz 0, . (19)
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The absolute velocity of the centre of mass of
link 3 is therefore:

V., = jre’” 92+ Jj ’”_236_/ b 6’3. (20)

Substituting Euler equivalent and simplifying,
Eq. (20) becomes:

Vg = (rf 02 + ryr, c0s(6, — 6,)0, 0, + %r; 9;) .
(21)
Acceleration Analysis of Model

Differentiating Eg. (8) gives an
expression for the acceleration:

[jr2 éz e’ + j’r, 07 ejHZJ

+(jr3 ése'i93+j2r39§ ej93]—7;1=0. (22)
Simplifying, Eq. (22) becomes:

b0 0% g2 i
(]rzeze r,0; e ]

+(jr3 é3 e’” —r, 932 ej%j—l;1 =0.(23)

Substituting Euler equivalent, the following
expression is obtained:

r, 0,(=sin@, + jcosé, )
—r, 02(cos @, + jsiné, )
+1,0,(~sin@, + jcosd,)
—r 932(00503 +jsing,)—rn =0. (24)
Separating real and imaginary components and
simplifying:

r, =-r,0,sin0, —r, 0 cos b,

—r, 0,sin 6, —r, 62 cosb, (25)

6, =" 0,080, +r, 07sin G, +r, 67 sin 6, |
7, COS O,
(26)
Equation (23) is the acceleration difference
equation which is given as:

Az + Asz - ASLIDER =0. (27)
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The absolute acceleration of link 2 and
the acceleration difference of link 3 with
respect to link 2 is obtained from Eq. (27), and
given as:

A, :(Aé +A£’):[jr2 éz e’ —r, 6] eﬁzj,

(28)
Ay = (Aéz + A3nz)= (j”s és e’ -1 932 e’? ],
(29)
Agiper = ’”1 =A,+A4,,. (30)

The absolute acceleration of the centre of
mass of link 2 is therefore:

4, - [ LYY j @)

Substituting Euler equivalent and simplifying,
Eq. (31) becomes:

Acy :Erz(922+924j - (32)

The absolute acceleration of the centre of
mass of link 3 is therefore:

Aes = [jrz éz e’” = 95 ejez]

N o
+[]536’3 e’® —336’32 e"93]. (33)

Substituting Euler equivalent and simplifying,
Eq. (33) becomes

A, = {r; (95 +6; J + 1,1, c08(6, — 6,0, 0,

T r,r,5in(0, - 6,)0, 02

1, sin(6, - 0,)02 6,

+ 7,1, COS(H2 -0, )(922 4932

1
L T | !
Z”s 3 T 03 . (34)

Potential Energy Formulation for Model

Using the pseudo-rigid-body model, the
potential energy equation can easily be found
(Jensen and Howell 2003). For a segment
modeled using a torsional spring and a pin
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joint, the potential energy J stored in the
segment is given by:

V:%K%, (35)
where K is the torsional spring constant and
6, is the pseudo-rigid-body angle or the angle
of deflection of the compliant segment.

The total potential energy in the
mechanism is therefore the sum of the
potential energy stored in each compliant
segment:

n 1 n

V=30 =22 (k6L (36)
i=2 i=2

where i = 2, 3,..., n enumerates all torsional

springs.
For the model, the potential energy
equation is given as:
1
V= E(Kle,il + K02, + K%), (37)

where K, K, and K, are the torsional spring
constants and 6,,,6,., and 6,, are the relative
deflections of the torsional springs given as:

O =0, (38)
0., =0, +sin1[r—zsin ezj, (39)
3
O,s =sin‘1(r—2$in ezj. (40)
&

Kinetic Energy Formulation for Model

As shown in Fig. 3, the centre of mass of
each link is moving with linear velocity and
the link is also rotating about the centre of
mass with angular velocity. The total kinetic
energy for any given link is therefore, the sum
of the translational and rotational Kinetic

energies:
Ttotal for each link = Ttranslation + Trotation
1 2 '
=§ch +1.0%. (41)

For any mechanism, the total Kinetic
energy is given by:

n

n 1 ' .
T:;]; :EZ miVCZi"'ICi'giz ' (42)

i=2

where i = 2, 3,..., n enumerates all moving
links.
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Fig. 3. Translational and rotational motion of
the mechanism link.

For the model, the Kinetic energy
equation is given as:

r :%szczz +%m3V023
1 51 5 1 ‘
+Ems r12+EIC2 922+E[C3 932 ) (43)
where:
m,= mass of links 2 and 3;
V., = velocity of the center of mass of links 2

and 3;
I,= mass moment of inertia of links 2 and 3

about the center of mass;

0 = angular velocity of links 2 and 3;

fl = velocity of the slider.

The first three terms of the kinetic energy
expression represent the translational energy of
the system, and the last two represent the
rotational energy. The mass moments of inertia
of links 2 and 3 about the center of mass is

given by:
1
I.=—mr". 44
Ci 12 i'i ( )

Lagrange’s Equation Formulation

Lagrange’s method is one of the most
useful techniques in generating equations of
motion of mechanisms, especially when
internal forces and reactions are not of interest
(Sandor and Erdman, 1988). The compact
form of Lagrange’s equation is given as
N E o, (45)
M oq,) % aq,
where: g, = Generalized position coordinates.
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There are as many Lagrange’s equations
of motion as there are degrees of freedom in
the system. The uniform standard form of
these equations holds no matter how
complicated the relation between the
kinematics constraints and the generalized
coordinates. Infact, one can strategically
choose a set of coordinates to facilitate
algebraic manipulation due to the invariance of
the form of the equations with respect to the
choice of generalized coordinates. Taking &, as
the generalized position coordinate and
neglecting the effect of damping on
mechanism, Lagrange’s equation becomes

afor | o _

4 |\ Ap e (46)
dt| 5q, | 00,

Assuming a conservative system, the
Lagrangian ¢ given below is formed by taking
the difference of the scalar quantities of kinetic
energy 7T and potential energy V of the system:
(=T-V. (47)

Becaused, is the only independent
coordinate in a single-degree-of-freedom
mechanism, the velocity of the centre of mass
and the angular velocity for the /™ link is a

function only of ezandé.?2 (Sandor and
Erdman, 1988). The following equations recast

the variables in 7'and 7 in terms of 6, and 92 ;

2 1, 2
Ve :Z’”z 0, , (48)

. 1 riricos’O,

VC?S = 7"22 Sln2 92 9224'—%922
4y —r,sin” 0,

. rysin? @, cos 6,

2
r; —

02,  (49)

2 ain2
r, Sin® 6,

r, =r,C0SH, +\/r32 —r,’sin?0, (50)
r; sin @, cos ,
2 2 ain?
N1y =1, 8in° 6,
4 ain? 2 .
r, sin“@,cos” 0, ,
r2—rfsin?g, °

3 ain 2
N 2r, sin” @, cos b,

s —rfsin? 6,

1 =—r,sin0, 0,— 0,, (51)

. _ ,
no=r/sin? 0,0+

0, (52
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0, :sin‘l(—r—zsin 92} (53)
3
- r, COS @ ‘
0y =-————2—0,, (54)
ry —r, sin“ g,
. 2 2 .
0? __ 10080, g (55)

v} —r}sin® @,

The Lagrangian ¢ for the model is therefore

1

1 1 '
l= Eszczz +Em3Vc23 +§ms ’”12

1
+_
2

1

Sl
2103932_

A EKlelil

I, 0;+

) rysin® @, cos b,

1 r/r?cos’ @,

1

1
2 Kﬁﬁz -

5 Engés-

(56)

Lagrange’s formulation requires that the
partial derivatives of the Lagrangian/with
respect to the generalized coordinate 8,and its

time deriva‘riveé’2 be carried out to form the

equation of motion for the system. When the
derivatives of the Lagrangian are expanded out
and simplified, the dynamic equation of
motion for the system is obtained which is
given as:

r,

g
|

-

ry sin® @, cos® 6,

5 rysin® @, cos b,
rf —r7sin® @
3 2 2

2
I3

—r7sin? @,

1 r,r/ sin 6, cos®

2 2 - o +4 2 25in2 g
NFs — 1, Sin‘ 0, r3 =7 SIN- 0,

+7/sin? 02J+1C2 +1,,

0,

+77sin? QZJ

rf cos? 6,

2 2 ain?2
ry; —r, Sin“ o,

}

1 r’sin®g,

1 rysin®@,cos’ 6,
M 5T w2 ¥2 T 2
2 (r3 —r, sin 672) 4 (r3 -

. rysing,cos? 0, 1r/rsind,cosd,

. 2 2 ain 2
rl —rfsin?g, 4 ry—r;sino,
rysin®@,cos” @, r,sin®0,cosd,

rfsin? @,

)2

+7,8in0, cos@2J+m{

ry sin @, cos® 0,

2 \|rf —r2sin?o,

rfsin® @, cos® 6,

2 2 ain 2 2
(r3 -7, sin 92)

+2

2
V3—

+
(”32 -

rysin® 6,

; 3/2 2 2 i 2
I’ZZSIHZQZ) ry —1; SIN° 0,

rfsin? @,

r, siné, cos® @, r, sind,cosé,

2_

2 oin 2
ry; —r, sin® o,

2

+77sin @, cos@zJ+1C3[

2 2 ain 2
N7 — 1, Sin‘ o,

. 2 2 2 aipn 2
(r32—r22 smzﬁz) ry =1, Sin" 0,

ry sin @, cos® 0,

) K, sin‘l(rzsin Herz cos 6,
+K,0, + K{ez +sin‘1(r—zsin HZD 14285 + 2 =M,,.(57)
"3 rf —r;sin®é, vl —r;sin®é,
Torque My is  transformed  to Equations  (57)—(60) represent the

mechanism’s output force F using the power
relationship given as:

Frn=M,,0,, (58)
T

F=—f—, 59
E (59)
00,

where:

2 .
o, — G, - r,” sing, coso, (60)

1P —r/sin? 6,

2
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dynamic model of the compliant slider
mechanism. Note that the equation of motion
was derived from the pseudo-rigid-body model
of the mechanism, rather than the actual
compliant mechanism.

Results and Discussion

Table 1 shows the mechanism parameters
used for the simulation. Position plot
representing the sinusoidal input and position
force diagram are shown in Figs. 4 and 5.
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Table 1. Mechanism parameters.

Mechanism Parameter
Parameters Value

rs 90 mm

I3 120 mm
mo 0.026kg
ms 0.037 kg
mg 0.087kg

b 30 mm

h 0.65 mm

/ 6.866 x 10 m*
E 207 Gpa

0o 0.02 0.03 0.04 0.05 0.08 0.07
time (s)

Fig. 4. Position plot representing the sinusoidal
input.
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= .
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1) PR SRR SR S S R SR S — 4
B T /a/ ---------------------------------- B
/=0 — / ------------------------------------------------ 4
-

0
012 013 014 015 016 047 018 019 0.z 0.21
Position (m)

Fig. 5. Position force diagram.

In the evaluation of the dynamic model,
three useful plots are analyzed, the mean force,
the median force and the peak-to-peak force
difference of the dynamic model as a function
of frequency, this is shown in Figs. 6, 7 and 8.
The frequency assumes a sinusoidal position
input with amplitude equal to 40% mechanism
deflection with a slight pre-displacement to
give a pre-load at full expansion. Notice that
the curve in the peak-to-peak force plot first
curves down, before it starts to increase.
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mean force (M)
w
By
m w

w
=
@

307 .5

07 i i i i i i i ! !
o 10 20 30 40 a0 B0 70 a0 j=in) 100
o (rad/s)

Fig. 6. The mean force as a function of
frequency.

median force (M)

10 20 30 A0 a0 B0 70 f=in 90 100
@ (rad/s)

Fig. 7. The median force as a function of
frequency.

180

180

=120

peak-to-peak force
o0
o

o 1iU 2iEl EiiEl tliU SiEl EiEl 7iEl EEI QiU 100
w (rad/s)

Fig. 8. The peak-to-peak force difference as a

function of frequency.

This is a very interesting discovery of the
peak-to-peak force plot which shows that there
is a range of frequencies over which a
compliant slider mechanism exhibits better
constant-force  behavior. This interesting
discovery will significantly improve the
likelihood that the compliant slider mechanism
could be viable in industry for constant-force
applications. For instance, at a frequency of 51
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rad/s as demonstrated in Fig. 8, the compliant
slider mechanism will yield a median force of
307.62N with a force variance of +3.9N as
demonstrated clearly in Fig. 9, which is much
better than the £19.2N the device demonstrates
statically. This better constant-force behavior is
likely due to inertial effects.

318

0.0z 0.04 0.06 0.08 0.1 012 0.14
tirne (s)

Fig. 9. Predicted force for sinusoidal input of w
=51 rad/s.

Conclusion

Much work is actually needed for a
further study on the dynamic analysis of
compliant mechanisms to improve on their
operational performance. Based on the
principle of dynamic equivalence, a simplified
dynamic model for the compliant slider
mechanism was developed using the pseudo-
rigid-body modeling technique. Simulation
results shows a very interesting discovery that
there exist a range of frequencies over which a
compliant slider mechanism exhibits better
constant-force behaviour than it does statically.
This interesting discovery will significantly
improve the likelihood that the compliant slider
mechanism could be viable in industry for
constant-force applications.
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