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Abstract— The Recursive one-sided hypothesis testing technique (ROHT) is one notable example of an Adaptive threshold
estimation technique (ATT) for energy detection in Cognitive Radio (CR). It is known to compute accurate threshold values
based on the proper choice of its parameter values, namely the coefficient of standard deviation and the stopping criteria.
However, determining the performance limits of the ROHT algorithm with regards to its minimum Signal to Noise Ratio
(SNR) level remains an unexplored exercise in the literature. Thus, in this paper, a preliminary study of the ROHT algorithm
is carried out to examine the effect of varying SNR conditions on the performance limit of the algorithm. The algorithm was
evaluated using signals varied from SNR = 10 dB down to 1 dB. It is shown that below the SNR = 3dB margin, the
performance of the ROHT may no longer be guaranteed for effective detection performance. Hence the need to improve the
performance of the ROHT algorithm for use in CR, using adaptive optimization technique.
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1. INTRODUCTION

A cognitive radio (CR) is a wireless communication radio
that intelligently senses its Radio Frequency (RF)
environment for the presence/absence of Primary User
(PU) signals, and wuses the vacant channels for
opportunistic communication while vacating occupied
channels to avoid interference [1], [2]. The concept of CR
was first introduced by Joseph Mitola III in 1999 [3], in
which he proposed CR for opportunistic communication
based on the use of Software Defined Radios (SDRs). CRs
are intended to obtain the best available spectrum for
communication through the use of cognitive abilities and
re-configurability characteristics. In this case, cognitive
ability refers to the capacity of the secondary user (SU) to
sense radio conditions within its immediate RF
environment, while re-configurability infers the ability to
adjust its transmission frequency and power, bandwidth
and modulation scheme.

Typically, CRs acquire spectra information via the use of
Spectrum Sensing (SS) techniques. The use of SS is
specified in the IEEE 802.22 draft standard for Wireless
Regional Area Network (WRAN) [4], [5]. It specifies
several methods for SS namely, the Interference
Temperature Detection method, the Matched Filter
Detection method, the Cyclostationary Feature Detection
method, and the Energy Detection (ED) method. However,
the ED is considered the most viable SS technique mainly
for its ease of deployment, low computational power, low
complexity and its independence of the Primary User (PU)
signal waveform [6].

Newer ED designs are required to adapt their respective
threshold values in accordance with varying channel
conditions. This has led to the design of several adaptive
threshold estimation techniques (ATT) in the literature [6]-
[9] with the Recursive One-Sided Hypothesis Testing
(ROHT) algorithm being one of the most viable algorithms
for use in the ED [10], [11]. The ROHT is known for its

simplicity, effectiveness and efficiency [10]-[13]. However,
determining the performance limits of the ROHT
algorithm with regards to its minimum Signal to Noise
Ratio (SNR) level remains an unexplored exercise in the
literature. This knowledge will enable users to determine
particular conditions below which the ROHT’s
performance may no longer be guaranteed.

Thus, in this paper, we present a preliminary study of the
ROHT algorithm to examine the effect of varying SNR
levels on its performance limits. It is noted that the ROHT
has an SNR limit below which its performance may not be
guaranteed for use in the ED. The rest of the paper is
structured as follows: Section 2 provides a brief overview
of ROHT algorithm, exposition of the ROHT model and its
process of operation. Section 4 presented the results and
discussion, while the Section 5 provides the conclusion
that was drawn.

2. THE SYSTEM MODEL

The detection system under consideration in this work is
represented in Figure 1. Typically, we considered the
reception of a Radio Frequency (RF) signal emanating in a
typical wireless radio environment. These signals are
received at the front end of the energy detection system via
an antenna designed to operate within a specified
frequency range(s), for example, within the VHF/UHF
band to detect TV white spaces. The received continuous
waveforms, y(f), are passed into the energy estimator block
where filtering and analogue to digital conversion takes
places. To obtain the frequency domain version of the
input signals, the energy estimator block computes the
Discrete Fourier Transformation (DFT) of the signal. It then
conducts a squaring operation and an averaging function
to obtain Y (n).
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Figure 1: The Energy Detection System

The energy samples, Y (1), are considered to be the test
statistic in this case. These samples are passed into the
adaptive threshold estimator block to dynamically
compute an appropriate threshold value, y(T); which is a
function of a certain sensing period, T. The test statistic, Y
(n), is compared to y, to determine the state of the channel.
If the channel is vacant (Y (n),< y), then Ho is declared
implying that the channel contains only noise samples, and
if the channel is occupied (Y (1),> y), then Hiis declared
implying the presence of signal plus noise in the channel.
These hypothesis are generally defined as:

Ho: Y (n)=W(n), for n=1,2,..,.N 1)

Hi:Y (n)=X(n)+ W(n), forn=1,2,..,N 2)
Where n denotes the frequency sample index, N is the total
number of frequency samples, X(n) represents the
transmitted PU signal, W(n) is modelled as Additive White
Gaussian Noise (AWGN), and Y (1) denotes the energy of
the received signal at the output of the energy estimator.

3. THE ROHT ALGORITHM

The Recursive One-Sided Hypothesis testing (ROHT)
algorithm is considered for use in the adaptive threshold
block of Figure 1. We describe in this section the process
involved in the ROHT algorithm. The flow chart of the
ROHT threshold computation process is presented in
Figure 2 [11].

The algorithm begins by initializing the set of signal
components within the received energy measurements. It
is assumed that the received measurement contains more
noise components than signal components and thus the
purpose of the ROHT is to disprove this hypothesis. The
algorithm then proceeds to set the initial decision
threshold which is given as a function of the standard
deviation coefficient, z —value, the standard deviation, and
the mean of the energy samples in the i**iteration. Based on
the z - wvalue and the initial threshold, the algorithm
assumes that a given percentage of the energy samples on
the right hand side of the normal Gaussian distribution
belongs to the signal components, while considering other
samples to the left hand side of the distribution as noise
components. The identified signal portions are discarded
and the process repeats. The algorithm comes to a halt
once the difference in the standard deviation between two
consecutive iterations is less than a specified random
positive value given as . The estimated threshold, the
mean and the standard deviation are considered to be the

final values for the entire frequency band under
consideration at a time. The following pseudo code is
presented for the ROHT algorithm [11]:
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Figure 2: The ROHT Algorithm [11]

|. Initialize S=@, So=0, No=M,i=0
II. Do

1) A =z-value * gi+ Wi

2)  Sw={ni| ni € Niand ni > A}

3) Nii=Ni-Smn

4) S=S5USm

5) i=i+1
III. Until (oin—0i) < B

4. RESULTS AND DISCUSSION

In this section, we present results from the training and
testing phases of the ROHT algorithm. The algorithm was
trained with simulated noise only signals to ascertain the
algorithm’s parameter values. In this case, the false alarm
rate is of utmost concern to the CR engineer, so we note
that the fixed parameter values cannot be changed during
the testing phase, which models a real life deployment
scenario. After the training phase, the ROHT algorithm
was evaluated based on signal plus noise datasets with
varying signal-to-noise (SNR) levels.

4.1. Training with the noise only condition, Hy

To determine the false alarm rate and to show how the
ROHT algorithm performed in noise only condition, we
simulated a sensed spectra containing N = 250 samples of
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only Additive White Gaussian Noise (AWGN). A
representation of this noise only spectra (a single sweep) is
shown in Figure 3. The parameters of the ROHT algorithm
were iteratively tuned until we arrived at an effective value
of z — value =2.5 and p = 0.5, respectively. The probability of
false alarm of Pra= 0.04 achieved for these values were read
off the performance curve shown in Figure 4.

4.2. Performance in the signal plus noise condition, H;

To demonstrate the performance of the ROHT algorithms
under different SNR conditions, we simulated an FM
signal, and we varied the signal strength relative to a fixed
noise level. The SNR was reduced from a high SNR level
(SNR = 10dB) to a low SNR level of 1dB. In this work, an
SNR of 0dB was not considered because it implies that the
signal is totally buried in the noise. It is noted in [12] that
sensing below SNR = 0dB is a difficult task for an ED in CR
especially when the ED has no knowledge of the noise
floor nor the PU’s frequency. The threshold estimated by
the ROHT algorithm for each SNR condition is presented
in Figure 5 and Figures 7—9, while the

-a7 T
Moise Signal
——— ROHT Threshold

98 | Il

-99

-100

Power (dBm)

-101F

-102

103 L " n " |
0 50 100 150 200 250

Frequency Index

Figure 3: Noise only spectra showing the threshold estimated
using the ROHT algorithm

performance curves for the signal plus noise conditions is
shown in Figure 6. It is shown in Figure 5 that the
estimated threshold effectively detects the signal samples
for the SNR = 10 dB condition, while clearly lying above
the noise level. Similar characteristics are shown in Figures
7 - 9 for the SNR = 5 dB, SNR = 3 dB and SNR = 1dB
conditions, respectively. However, below the SNR = 3dB,
particularly at SNR = 1dB, the threshold is shown to miss
the very low signal samples,
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Figure 4: The probability of false alarm computed for the noise only
dataset based on a true threshold value of -97 dBm.
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Figure 5: Signal plus noise spectra at SNR = 10dB showing the
threshold estimated by the ROHT algorithm
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Figure 6: Performance for the Signal plus Noise dataset for

(SNR=10dB to 1dB)

nevertheless maintaining a good false alarm rate by ly-ing
above the noise level. This preliminary results indicate that
the ROHT algorithm estimates effective thresh-old values
only until the SNR = 3dB condition, below which the
detection performance of the algorithm may no longer be
guaranteed to meet the IEEE 802.22 re-quirement given in

[5].
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Figure 7: Signal plus Noise spectra at SNR = 5 dB showing the
threshold estimated by the ROHT algorithm
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Figure 8: Signal plus Noise Spectra at SNR = 3 dB showing the

threshold estimated by the ROHT algorithm
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Figure 9: Signal plus Noise spectra at SNR = 1dB showing the

threshold estimated by the ROHT algorithm

5. CONCLUSION

The ROHT algorithm has been presented and evaluated
under different SNR conditions ranging from SNR = 10 dB
down to SNR = 1 dB. The results obtained indicate that the
performance of the ROHT algorithm may not be
guaranteed below the SNR = 3 dB. These results will be
valuable in the design of effective adaptive energy
detection systems for spectrum sensing in CR. Further
research will be carried out to develop automatic and
optimized methods for improving the performance of the
ROHT algorithm in low SNR conditions.
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