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Abstract: The Tau method has for some time been plagued with the problem of proyiding a
computationally efficient general error estimation procedure for the perturbed p_roblem. h_'n this paper -
we are concerned with Differential formulation of the Tau methods for numerical solution o_f initial
value problems in non-over determined fourth order ordinary differ_entlal equat?ons. To th!s epd,
a polynomial is constructed based on the error function associated with pol){nom|al economization
which gives a theoretical estimate of the error of the Tau method. In doing so, the qumber of
undetermined constants is kept to a minimum and the resulting polynomial does not require further
evaluation in the interval under consideration. The error estimation formula obtained for the class of -
ODEs is efficient and accurate. Tau Numerical results and details of the algorithm confirm the high =

accuracy and user-friendly structure of this numerical approach.
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Introduction
The tau method first introduced by Lanczos

(1938) has over time been developed into
different variants so as to improve its accuracy,
widen its scope of application or render it
amenable for easier use. In this direction,
Lanczos (1956) developed a modification
based on the use of canonical polynomials.and
Ortiz (1974) showed that the elements of the
canonical  polynomial  sequence can be
generated by means of a simple recursion
relation which is self-starting and explicit. With
the aid of a certain procedure which Lanczos
(1956)

Differential form of the Tau method

Consider the following boundary value problem -

in the class of m-th order ordinary differential
equations.

Ly(x):= Z R®)y"(x)=f(x), asx
r=0

<b (1 1a)

and the functions f(x) and
% Ny

called "Tau method",approximation of high

accuracy could be obtained fer a number of
functions used in scientific and engineering

computations. Accurate approximate
polynomial  solutions of linear ordinal
coefficients can be obtained by using the Tau
method introduced by Lanczos (1956).
Techniques based on this method have been
reported in the in the _literature with
applications to more general equations
including non-linear ones Onumanyi (1982), \f
while techniques based on direct Chebyshe
series replacement have been discussed by. .
Fox (1981). We review here briefly the
differential form of tau method.

m
L'y (x) = Z e YO ) = por K
r=0

=1(m (1.1b)

Where Ia' < @, Ibl <0, @ry, X P T
0(1)m, k = 0(1)m, are given real numbers,

P(x) = Z Paxtr=0Dm (12)
k=0
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i‘are polynomial functions or sufﬁciently close
polynomial approximation of given functions.

Definition

Equation (1.1a) is said to be non-
overdetermined if s, given by (1.3) is zero, i.e.
ifs= 0, otherwise it is overdetermined. i.e. The
number of over-determination, s, of equation
(1.1a) is defined as :

s=max{N,—r:0<r<mj, for N, 2
rand 0<r<m (13)
For the solution of (1.1) by the tau method
[seeAdeniyi,R.B(1991),Adeniyi and Onumanyi
(1991),Lanczos(1956) and  Ortiz(1974)]we
seek an approximate.

n

(X)) = z o.x, ‘n+ow ' (14)

r=0

ofy(x) which satisfies exactly the perturbed
problem

Ly, (x) = f(x) + Z75

Tm+s-1 Tn-mer+1(x),
as<x<b (1.5a)

L'y () = pi, k= 1(1)m (1.5b)

Where,r = 1(1)m + s are fixed parameters to
be determined along with a,, r = 0(1)m

In (1.4), by equating the coefficient of the
power of x in (1.5).The polynomial

T.(x) = cos { rcos™* [%H =

Z Cl" xk
k=0

(1.6)

is the r-th degree Chebyshev polynomial valid
in [a, b] (seeAdeniyi and Onumanyi(1991),Fox
and Parker(1981) Ortiz(1974)

Error estimation of the Tau method

We shall discuss briefly the error estimation of
the tau method for the differential variant.

Error estimation for the differential form

If we define the error function

en(x) = }'(I) T yn(x) (21)
which satisfies the error problem
m+s-1
Ley(x) = Z Tmas-1 Tn-mare1(X) (2.2a)
r=0

Ley (xpi) = 0,k = 1(1)m(2.2b)

The polynomial error approximation
Tn-ms1(x)

(enlX))ner = EERERYE (23)
n=m+1

ofe, (x) satisfies the perturbed error problem

L(e"(I))“+1

m+s-1

(—Tms-1Tn-mars1 (%)

+ e Tacmirs2 () (240)
L (enxn)), .1 =it 0
(2.4b)

where the extra parameter ., r=1(1)m+s,
and ¢, in (2.3) - (2.4) are to be determined
and p,,(x) in (2.3) is a specified polynomial of
degree in which ensures that (e (¥)ns1
salisfies the homogenous conditions (2.4b).
With (2.3) in (2.4), we get a linear system of
m+ s+ 1 equations, obtained by equating the
coefficients of x™*s*1, xn#s, | x"™+1 for the
determination of ¢, by forward elimination,
since we do not need the %'s in (2.3),
consequently, we obtain an estimate.

e Ny l‘pml
E= ;‘Qxasxbl(e"(x))"‘*l‘ = 1cﬁtﬂti)i

= max [eq(x)|

A class ofnon-overdetermined fourth order
differential equations
We consider here the differential variant of the
Tau method for the Tau approximants and
their error estimates for the class of problems:

(g + ayx + apx?® + a3x® + ax)y¥ (x) +
(Bo + Brx + B2x* + Bax¥)y'il(x) +

(Yo + 11X + ¥2x2 )y (x) + (& F02)y' (%)

+ woy(x) = Zfrx' (3.1a)
=0

(@) = po, ¥'(a) = py, ¥"(a) = pa,

"' (@) = p3(3.1b)

That is, in this case m = 4 and s = 0 in (1.1).

We shall assume thata = 0 and b = 1 since

L x=a)

=———-  a<xs<)b (3.2)
b-a
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Transforms (3.1) into closed interval [0, 1].

Tau approximant by the differential form
In order to deriver tau approxlmanl, we seek
(1.4) and substitute

an approximate solution
into slightly perturbed (3. 1) to have.

n
(ap +@mx + apx? +ayx’ + “4"')Zr A
r=0
~2)(r—3ax"

(Bo + Brx +pox* + ﬁsxs) s F 6 —

D(r-2)ax" +

(o + 1ix + szz)z r(r— l)arxl'—z

r=0

n n
+(8 + a,x)zra.,x'-z + woz arx’
r=0

r=0

= Hu(x) +Zﬁ-xr &)

r=0

which yields ,

n

r(r—1)(r — 3)aoarx"*

=0

+ "Zo[r(r D) -2 -3

+r(r= 1 ==

r(r = 1)(r —r(r — Dfolarx"
+Z[r(r ~1)(r-2)-3ax"?
r=0

+Zr(r (-2 +70 - D1
r=0

Frogl ezt + ) [r(r = 1) (=2~ 3ay
r=0

+7(r = 1)(r = 2)B; +7(r — Dyz +18,]a,x"

n

= N o+ TR + TTaea () + 132 ()

r=0
+7,Tp-3(x) (34)

where,

n=1
c T o

X) = (

reo ekl ZCr" <%
re=g

n-=3

Tn_3(x) = Z c:n-s)xr
r=0

This leads to:

Z[mk(k =Dk =2)(k - 3)(k - 2)

k=0
+yak(k = 1) + 8,k + wp)a, x*

n-1

+Z[a, + Bak(k + 1)(k = 1) + yyk(k + 1)

k=0
+8o(k + Prk(k + 1)(k — 1) + yyk(k + 1)

+8o(k + 1)] a4 x*
+ X023 az(k + 2)(k + 1)k(k — 2)+

Bulk + 2)(k + 1)k +y(k + 2)(k + Dlay ,,x*

n-3
+ ) [ay(k +3)(k +2)(k + 1k +

k=3

n-4
+Z[a0( k+ D[k +3)k +2)(k + 1]

k=0

a k
eraX' T3 Xk Cén)xk e ks
=0 “k
n-2 n(n-2
+ T3 ER2 Ok + 1, T2 Vxk (35)

hence,
[asnn—1)(n—2)(n—3) + fsn(n—1) -

(m—2) +y:(n—1) +6;n + wpla, — f;

Ty C,E")}x“ + {[agn(n—1)(n — 2)(n — 3)(n —4)

+pn(n—1)(n—2)(n—3) +y(n-1)(n-2)
+ &;(n — 1) + @p] apy

+asn(n—1)(n—2)(n—3) + fpn(n—1)

—,C™, — 1, C0 [y (n - 2)(n - 3)
(n—2) +yan(n - 1) + [donlanfuil(n = 4)
(n—5) +ps(n—2)(n—3) =912

i
1
!
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 (n=2)(n=3)+6,(n = 2) + wp)) -y
} Hay(n-1Dn-2)(n-3)(n-4)
=D -2)(n=3) +p(n-1)
(n=2) +§(n=1)]ay, +[an(n=1)
m=2nr=3)+pnn-1)(n=2)+7

() (n-1) _
n(n = D]anfroy = 1,Coty = 10y,

6) +By(n = 3)(n - 4)(n - 5)
720 = 3)(n - 4) +6§;(n - 3) + wolan_3
Has(=2)(n = 3)(n - 4)(n-5) + g,
(n=2)(n-3)(n-4) +y,(n-2)(n-3)
Hoo(n = 2)] ap_y[ay(n - 1)(n - 2)(n-3)
,m—ﬂ+&m—nmwnm—ﬂ+n
(= 1)(n - 2)] apy +Hayn(n - 1)(n - 2)
(n—3) + Bon(n - Dn-2) U fp-3 =
R =0 (3.7b)
[asn-2)(n - 3)(n - H(n-5) + By
h-nh—nm—ﬂ+nm—nh—3
)+8,(n-2) + W)y + [a3(n — 1)
(n-2)(n-3)(n-4) +B(n~-1)
m-2)n-3)+ hn-1)mn- 2) + 4§,
(= Dap_, + [an(n - D(n-2)(n-3)
Hhnm-1)n-2)+ Yor(n - 1)]a, -
1c) - et B ~ fra =0
(3.7¢)
[as(n - 1)(n - 2)(n-3)(n- 4) + 8,
m-1)@n-2);n- +rm-1)n-2)
+6(n-1)+ Wolan_y + [azn(n - 1)
(n-2)(n-3)+ Ban(n~1)(n-2) +y,

N -1) + §nla, - ST i
_fn-l =0

™ 4 aon(n + 1)(n

Here, we obtain by e
coefficients of the |in

1y 4y (n - 3)(n - 4)(n - 5)(n -

(e + Dk = 1)(k - 2) 4 ,

=10y

~Dn- Ay, = g

Quating corresponding
ear system tg have

(el = D0k ~2)(k - 3) 4 ke -1

(k=2)+¥akn = 1) + 8k + agjg, 4 (a,

k(k + 1)k
(k=1)+yy(k + Dk + Bo(k + l)lakﬂ

Haz(k +2)(k + Dk - 2) +By(k + 2)

(k+ Dk +y,(k + 2)(k + Dlay,,

Hay (e +3)(k+2)(k + 1)k + Bok +3)
(k20 + 1))ty ~ 7,6 g, clo-n

1,(3,,(::))rl = hha () + (- )Ty (x)

(24 = 23)Tpa (%) - TyTya(x) (3.80)

where ,

X onTy 5 (x)
(e, =T
Cn—!
b ¢u '#;3 Cﬁnha)xr“
= “‘CW_ (3.8h)
differentiating (3.4b)

ne-3:
and substitute intg (3.4q)
to have

(a0 + ayx + a2 + a3x* + x4 —d’“—.

n-3)
e Cll~3

b Z(r D0 +20+3)(r 4 4)c0Dr
‘ ; o 3 ;
i 3 ; O
% lan(n =~ 1)(n - 2)(n - 3) + fyn—1) o+ Bux+ it + ) S
" (n~2) +y,n(n - 1) +68n+ wplay, n-3 : 2 SR
R ) AR (3.7¢) Z(r 20 +3)(r + 4)c" Vx4 4 g,
) | r=0
. The solution of the system together with the ' O e
three equations arising from the condition * Tr1x +1,3%) (n—S)Z(r e
(3.1b) for 4, = s el :
| 0(Dn and'r,, T2 T3, Ty, SUbsequently leads to Cn-3yrsz | (80 + 6,%) Z‘(r +4)%
. the approximant Yn(x) r=0 i)
n-3
' Ermor estimation for differential form Cn-2gras “’0'%552 s
= | For problem (3.1) we have from 24 - w3 1o
| ' (3.8¢) - Ton method
11leﬁALmd The differential formulation of the Tau m :
E—

(36)
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Thus, from the coefficient ofy™t, x™, xn 1 2"

and and x"*, we get the system

tcathe ___-?:"_3) [wo + (n + )&+ (n+ nvz
n-

; +(n-Dnn+ 1)f; +
(-2 -Dnm+1) ]3> (3.9a)

HEER A (S r,)ci"’
gy L+ 10,

+ (n+Dnyz
+ (- Dnn+1f:

o+ D -0 = 2)as)c5? (wo
tn(n — 1)y, +nd; + (n+ -1

Ba3c1(3.9b)

ra n
68 + (8, 1O = -C—x_—g)-

n-3
[{(n+ Dn(n—1)B; + m+1)+ (- T3)
" V-0 - Z)QIIC'E':?)
+nm—-1)n— 2)B, + n(n— Lvo
+n(n+1Dys + 18I0
HEn-D@n -2+ 0O -8

LI B (3.9¢0)

2,60 4 (8, —T)Cy + (85 = r,)cY

- O = 5l + 1

(= D + (0 + Diln = Dl = Da)
€= 4 fa(n — Dy, +nn — D = 2B

€D 4 (n— Dof(n — Do + (n = 1)

-2y} + - D —2rCes)
(3.9d)

2,00 4 (8, — 1) + (B3 — )CE0

n-3
! (-2) -
o (Ey —r)Crs T C 0 c@-3)
n-3
[{(n + Dn(n — D(n - aaCrs
+(n+ D — DBLED + (-1 -2)

) (3.9¢)

n

Using well-known relation,

C'(‘n) — g2n-1, (_“_('-:)1 = —lnC,(,"). C’(lv:)1 e

2272 \\le solve this system by forward

substitution to for ¢;, to obtain.

-7
¢ —Zzn T4
i B

ke

(3.10)

where,

y ks C,(."”)C:(.ri)s C,(,'l;”k,
s L T 7T b Nkt B - T

6 C,(.n) C’(‘nJC;:'v::-l) cin-1

c C(n-l)

C(nnlc(n—u
ponclnod ok, 4 —’-‘(;3—)"%1(2
=1) ~(n+1) n=1) ~(n
Cv(::\ cn:1 C‘ﬂ-l Cﬂ
(n=1) (n-2)
o C,Y:”C,E'l)l Cn'-‘-! = Cn-3
= +1 (n-2)
R

1) ~(n=1)
R e W
C(n-n) CT(‘:-:I)

ondy el
(n-1) ~(n-1)
n+1 Cner ¢

n-=1

CT(l"+1)Cl(l“)CI(I’1;l)

Sn _ onioncd
@D 1
n+l n-1
C(“)h C(Vl) C(")
_\bn-k | Cacaontid g,
™ cmm-n
n n n=1

(n=1)
= ik + Ky — ks (3.10b)
cll-l

where,

Ky = wp + (n+1)6 + n(n+ 12
+n(n+ D0 —1ps

4n(n+ - D — 2)a,

Ky = (0 + D@ + Dry 0 +1)
(n—1B, +nn+ D@ - 1(n-2)a;

+wp + n(n =Dy, +nd;y + n(n—1)
(n-3)
n-1
(ﬂ. T Z)ﬁ:{] C("_a)

n-3

Ky = [n(n+ Dn— 1B,
+nm+ D - D0 - 2)a,)]
+ [n(n — D(n - 2)p;
(n-3)
+n(n — Dyo + [+n(n — Dy; +n8l 55
c |:;3)

+ln-D=2)ys
(n=3)

+ (n — 1)8; + wy) C'(‘—;f—as
n-3

12 Maali. A.1 at al.
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Ko =n(n+1)(n = )fp + nln+1)(n=1) y(0) =1 ¥'(0) =0,y"(0) = —3,
Yy () =-1
(n-2)a, + [n(n— Dye +n(n = Dn=2)
L= With elxact sc;lut'ron '
(n-1) = 1 1
ﬁl]%ﬁ Hn-1)6+ (- 1)(n-2)nl 'c"!v:ﬁ y= __B__ex _,Iie-x _Ee—Jx s 0S¥<y
s The numerical results are presented in Tabye 1
below. !
K, = n(n + D(n = 1)(n = Dag +nla+1) '
(n-3) Table 1: Error and error estimates for
. el 1)(n-2a Cas _Er_oﬂ_e_ﬂﬂ“__\\
(n- I)EDE(-;;_'-,; +(n— 0 C,(‘:” Degree (n)
£ n-3 Error —4—5\3_“7——
| 0D T Y T R T
X407 X 10740 406
10°®
Thus, from (2.5) we have, e+ 103x  463x 35 2389
10°T SNaio9 <X & 5 X
L PP : 101034
12Kl Comment: £*accurately captures ¢
as our desired error estimate. Problem 4.2

Numerical examples

We considered here three selected problems
for experimentation with our results of the Ui m S
preceding sections. The exact errors are Y@ =5y 0 ==y UD:E'}' 0 =-2

Ly@=y"(x)-y® =0, o0<x<1

obtained as with exact solution
| €= MaXoera (Iy(x) —ya(l), 0sx< 1
1, {x,} = {0.01k} for k = 0(1)100 y=3e* +icusx —sinx
Problem 4.1 3 ;
i The numerical results are presented in T.
Ly(x) =y"(x) +y"'(x) = 7y"(x) —y'(x) below: e
+6y(x)=0
Table 2: Error and error estimates for problem 4.2
Degree (n) -
Error 4 5 6 7
€ 2.77 %1073 1.98 x 1078 261x 1077 2.45% 10710
£ 467x 1072 3.49x 107° 9.32x 107° 1.23x10°°
Comment: error estimate yields a better
accuracy
. Problem 4.3

Ly(x) =y*(x) - 4y(x)=0,0<x< 1
y= d’fﬁ+l"ﬁ?

¥0) =1, 5'(0) =0, y"(0) = 0,y"'(0) = 2 7 0sx<1 .
The numerical results are presented in Table
With analytic solutions 3below:
13 [ Maali. A.1. at al. The differential formulation of the Tau method
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Table 3: Error and error estimates for problem 4.53

e it

~Degree (n) oy
Error 4 B —-TB 6“'— £
€ 7EEx10-7  29710°° 358 x 1057 1.20x 1077
E* 7.66x% 107" 1,72% 107 831X 10~*

2.76x 107

Gomment. Order of approximant is captured,

Numerical experiments have been carried out in order

The result obtained in the work shows the
closeness between the error of Lanczos
economization process and the error of Tau
method. The numerical experiments support
the theoretical results.Some theoretical results
are given that simplify the application of the
Tau Method. The application of the Tau
Method to the numerical solution of such
problems is shown. Numerical results and
details of the algorithm confirm the high
accuracy and user-friendly structure of this
numerical approach.

Conclusion
The differential form of the tau method for the

solution of initial value problem (IvPS) for
fourth order non-over determined ordinary
differential equation has been presented.We
note that the present error estimate yields a
better accuracy than the estimate of Lanczos
(1956), Fox (1962), Onumanyi (1982).The
Lanzcos (1956) error estimation procedure is
applicable to the class of first order linear
ordinary differential equations with polynomial
coefficients and whose solutions are defined
in the interval [0,1]. The procedure is restricted
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