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Abstract: This paper concerns the Lanczos' Tau Method for the numerical solution of Ordinary
Differential Equations (ODE).The integral variant of the Tau method is considered here. The general
expressions for elements of the Tau matrix equation involved in the integrated variant of the Tau method
for the m-th order linear ODE and the corresponding general error estimates for the class were obtained.
Perturbing the integrated error equation improved the accuracy of the estimate significantly. The error
estimatior was based on the error of the Lanczos economization process and it satisfies the
Corresponding Perturbed Differential Equation(PEDE) We integrate through this PEDE and consequently
increased the order of the perturbation term leading to an increased in the accuracy of the result
obtained. Members of the class of problems characterized by m+s= 4, were investigated for study,where
m and s are the order of the differential equations and the number of over determination, respectively.
Consequently, a generalized tau matrix system was constructed for the m-th order linear ODEs and a

generalized error estimates for the class of problems with maximum of three over determinations were
obtained ;
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Infroduction

In 1938, Lanczos introduced an accurate
approximate solution for ordinary differential
equations with polynomial coefficients using Tau
method. The method is related to the principle of
economization of a differentiable function

L) =XZ Ay (x) =
(x) (1.1a). -
with the smooth solution y (x), a< x < b,
laf < o0, [b] < wsatisfying a set of multi-
point boundary conditions

Ly =Els' ayy® (xy5) = apf = 1(1)m
(1.1b)

implicitly defined by linear differential equations
with polynomial coefficients.

To illustrate the tay method, let us consider
the m-th order linear differential-equation

where @ijy Xy, ;i = 1(1)m-1 J=1(1)m
are given real numbers, f (x) and Pi(x), i=
0(1)m in (1.1) are polynomials, -
The idea of Lanczos is to approximate the
solution of the differential system(1.1) by n-
th degree Polynomial function =
In(®) = B o a,2"n < o (1.2)

which is the exact solution of a perturbed

e.quation obtained by adding to the right hand
side of (1.1a) a polynomial
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perturbation term. The polynomial y,, (x),
salisfies , the differential equation

Lyn(x) = Zno P(x)yn'V0x) = f(x) +

H,(x) (1.3)

L'yn(x):=E00" gy (xy)) = ayf = 1(1)m
(1.3b)

where the perturbation term, H,(x) is
constructed in such a way that (1.3) has a
polynomial solution of degree n. From
Lanczos (1938), H,(x) is taken as the linear
combination of powers of x multiplied by
chebyshev polynomials .This choice of the
chebyshev polynomials arises from the
desire to distribute the error defined by
error = %51y (x) — yu (1)1(1.4)

evenly distributed in the interval [a,b].

The chebyshev polynomial T,.(x) in a < x <
b is defined as

Ty (x) = cos [r cos™! [[3-(;‘%] - 1]} =

TR Gaitx® (1.5)
with,

C'Er) = zzr—l(b 2R ﬂ)'r(1.6)

From the point of view of accuracy , the
form
H'I(x)‘- = Zﬂfn’_' Tm+s—1Tn-m+i+2(x)

(1.7a)

is considered throughout this work , where s
denotes the number of overdetermination of
(1.1a) defined by

S= max{N,—r,0<r=m]jfor

N.>r and 0<r=m(1.7b)

To determine the coefficients a, , r= o(1)n
in y,(x) from (1.1.3)where is it, a system of
linear algebraic equations At = B, obtained
by equating corresponding coefficients of
like terms of powers of x in (1.3)not seen
and then using conditions (1.3b), is solved ,
1.=(ag, Gy, Az, e oo Bnp T2 T20 T30 e T e
The tau method is of order p, in the sense
that if the exact solution of (1.1) is itself a
polynomial of degree less or equal to p, the
method will reproduce it.(see Ortiz (1974 ).
Techniques based on the method have been
reported in the literature with application to
more general equations including non-linear
ones(see Onumanyi and Ortiz (1982) and

Ortiz (1969))., while techniques based on
direct chebyshev series replacement have
been discussed by Fox (1968)

Definition of terms

Definition 1.1

The differential system (1.3) will be called
the Tau problem corresponding to the
differential system (1.1) We shall call n —th
degree polynomial y, (x), which satisfies the
Tau problem (1.3), the tau approximant of
(1.1) and the Tau solution of (1.3)

Definition 1.2

The system of equation At = B, where
1=(ay, @y, az, .. ... Ay, o o Il o
resulting from the process of solution of (1.3)
will be referred to as the Tau system of
(1.3).

Definition1.3
Overdetermination Fox (1968)
Consider the differential system
x2y"—y(x)=0, 0<x<1,
(1.8a)
y) =1, (1.8b)
If we assume the polynomial solution (1.2)
not seen for (1.1.8) , we can obtain the

following
equations.
—ay = 0
—a, = 0
T o =0 :
na, = 0 (1.9) =
1(n-1

Since the last equation in (1.9) refers to the
coefficient of x™*!, we need to add a
termt, T, (X)to the right hand side of (1.8a)
for the satisfaction of (1.9) .This is not,
however, sufficient for the unique
determination of all the coefficients as a,
can be computed in two different ways from
(1.9) and is thus over determined. So the
number of over determination of (1.8a) is
one. Actually, we have (n+ 3) equations at
our disposal -(n+2) equations from \
equations from (1.9) and one equation from |
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(18b) - for the determination of (n+1)
coefficients. Hence we need to introduce
two other unknowns r,andt, in the
perturbing terms al the right hand side of
(1.8a). The right hand side of (1.8a) thus
becomes 1,Tn,,(x) + 1, T(x)

" The integrated formulation of Lanczos
Tau method
Let us consider the m ~th order linear
differential system (1.1), that is ,

Ly(x) = EiZ, Ay (x) = f(x)
b ; (1.10a)

asxs<

Ly(xi): = Zitg! a”y“’(xu) = eIt
(1.10b)

tet [If ' g(0)dx

denote the indefinite i times applied to the
function g(x), and let

i

The integrated form of (1 .10a) is then ,

The Case m=1,s=3
For this case we have from (1.1) that,

Ly(x) = (Pyo + Pyyx + PiaX? + Piyx® + P yxt)y(x)' +

(Poo + Poy X + Pyyx? + Poax®) y(x) = BI, fixt, y(a) =

and from (1.13) we have,

X’
Jy (Prg + Pyt + Piat? + Pigt3 + Path y(6) de + f:(Pan + Pyy

= fo o fitdt + H, ()

Maiden Edition I 2013

Ly(x) =
™ [ fedx+ Cp(x)

(1.13)
whereC, (x) denotes an arbitrary Polynomial
of degree (m — 1) arising from constant of
integration .The Tau approximant , Ya (%), of
(1.10) thus satisfies the perturbed problem
fL}’,.(J\') “
0 "I f@dx+ Calx) + H,, . (x)

(1.14a)
Lylxy) =q, j=
1(1)m (1 14b)
where,
Hpym(x) =
[:;s_ltm+s-lTnim+(+z (x)

(1.15)

The Tau problem (1. 14) often gives a more
af:curale approximation than (1.3) due to
higher perturbation term Hyym (x) in (1 14)
[see Fox(1968) and Ortiz(1969)) ‘

Derivation of Tau approximant

We consider here, the derivation of tau
approximant for the integrated formulation of
the tau method for the class of problem (1.1)

where m+s = 4 (IE or the cases w| 1ere m =
1,5-3,m-2 s=2 m=3 s=1 =

0 3 ' an =4

) dm 5

a (2.1)

t+ Poyt? + Pyatd)y(t)de

(2.2)
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where, Gy aed e n+1
Ha(x) = 1 ZC,"'"': ZC“‘”’:’ +1 Z el o Z L vt
r=0 r=0 r=0 r=0
(2.3)
We seek an approximate solution of the form,
(2.4)

y.(!) = Yo ax"

which gives,

[X(Pro + Pt + Pt + Pt + Py t)yn(0)' de +[7 (Poo + Pont + Poat? + Post*)ya(0)dt

2
= [[Qhofithdt + n E GO 41 z"*’c""” rAn I G+

Sl e (2.5)

Integrating the terms of (2.5) , applying (1.1b) and collecting the like terms we obtain ,

Poo+TP, Poy+TPs n [PoatrPi3 r+3
n r n 00 11 r+i n o1 12 T+2 4 [____ +.
Py Troax" + ¥ [—rﬂ ] ax + X [ .2 ] QrX Lro eyt S |
P, 3 (n+2)
! Z:=° ["‘ulr*;" H] arxr+d -1 nfao (IHQ)xr A Z:!:-yg C'Sni» )xr —-13 z:};—g C ey
(n+1; Al xTt
Ly i " =Py oot Z;—‘:ufr_',“ (2.6)

Equating the corresponding powers of x in (2.6) above, we obtain the tau system.

At = b, where,

= c®
—c?_

el 0 0 0 0 ) 6"
TSR L OB 0 G _cor_ £
Pax PoatPin Py 0 0 0 “C )—C(E) ™ t
T haaniipn 0G0 ST m6 g0
e R e I 0 _Ca _C“ Cm %
Py Tp L PO Spoetara Py -C( '_c® 2
A Pos z‘ :zP ‘ZP Py 3Py 5 Pgo+5Pyy (g)_c C(T) C(E)
+
Bl’arrPﬁ—NTup N T x TRST —Cs C(B) Cm (")
: 02Tt 1N e P 5P (9] C
0 5 Mot e a0 (0 0
b 6 Poat3Pis™ PUI"'SP"—C( ) (8) 6 —C
0 0 L Y G ¢ 0
05 iy ORBANT e © PostsPu—Cs_c® o 0
0 0 0 0 9 2 0

_C"’i“) 0 0

110 Maali A. 1. et al. Integral variant of the Tau methods

|
|
|
|
|

Scanned with CamScanner



B R SR e T

:

Maiden Edition ‘ 2013
Jewel Journal of Scientific Research

(2.7)
Pyoto
g fo
a, h
2
a; o
* - 28)
r= Z: and b = "T' -
% L
5
5 Is
T3 ':
Ta 0
0
Frem (1.1) , the general case for m=2, s = 2 is given by
I: Jo (Pzg + Post + Ppt? + Poyt® + chf‘))’r'-'(')dfd”"f:I:(Pm + Pt +
Pyt + Pust®)ya(e)dedus [ [1'( Poo + Post + Pogtyn(t)dtdu = [y f;' (Tiko fit') dedu
+ 11 Tnaa(0) + 13T 43(0) + 13T 2 (X) + 1, Ty, () (2.9)
Integrating each terms (2.9) ,collecting the like terms and equating the corresponding
coefficients of x for n = 5 we have the tau system B*D =G, where
B=
Py 0O 0 OR:0580 —C;‘J) _Clga) "CS)_Céﬂ
NP 0 o) " (e) (7)_ (6
Komahtr B YO R B e Gkl
20 —C;) _Cz(B) __c;n__cg(,)
(9) C)
Niy Niz Ny Py O 0 -G _Czu —C;”_C;é)
s Ml BT 0o
62 Nes  Neg Nes Py _C;") _Céﬂ) —CS)-CéE) (2-10)
—c® _68 _-~™M
0.0 Ny Moy Nog Ny G € Co =)
g0 S0 TN NG B, =Crige=Cl D C k8
0 0 Ngs Ny (9)
=g (8)
00 o0 OB DN 25 - 0 g
—c§ 0 0
Where,
N>y = - =
21 P’,‘u H’Pn ) N;”—% Ny = 9_061_ SN = %. Ny, = P_;l_ e PogtPu
= Foa Poa 6
Ns, B BN _"al‘n"i L NE = Pm;"z). Ne, = Vnn+ZP;;+2Pzz ;

_Poyt 2
Noy =2otthatibey \  Fortapis 42my,
20 30

y Noy= FPio+2P3; NS Poo+3Py, +6P;;
4 20
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Pau+4Py, +13P33
”, = S04
A TR TRAL TR ="""'_]_L‘N,r, - 30
Nop 2 Pgy +3P 3 +6Pyy Nm - LL_T—— 65 [
"= 30 ’
Pgg#5Pyy +20P3;
Pyo+4Pyy N, R
. PoatdPyy +12P54 B A====3 , Ve 42
Nyg = fatthutilin |y, SSntBULIS Ny, = S0
4

Poy8Pis +20Psy o Poat8Py 4203
Nog B e 08 e

Paoaq
Py + (Pyo = P21)ag

Qg Iy
a‘ Izt
Q, o
a, 7
a, 3| 12
D= a5 and G 5
15} 20
T, ¥ ]’—:]
Ta 72
Ta 42
0

0

Form=3,s=1
The general form for m =3,s=1from (1.1) is

I: J: f,:(Pzn Py W+ Pow? + pywd 4 P34w‘)y,;"(w)dwdtdu+_f: Jgu f;(Pzn +Pyw +

(Wdwadtdu+ -[: ft;‘ J;(PIO +Puyw +PLw

R G o) Yn(W)dwdtdu = [* ¥ s Tt i)

Paw? + Ppyw?) y B) yn W) dwdtdu+

where, Hiymyr (x) is given in (2.3)

-Using the same procedure we have the tay System

B*D = G, where in this case

i =

:

T 00 M n DRI CIDRE (v =Gt

21 Py 0 DEORE D _C(';) C(B) () _ ~(6)
= ~felkthed

Rsi Ry, Py DSRU0 ¥ y LN

GRS COE 0 e
Rii Ry Ry e Sy _63(9) _Czta) _0:57)"(.'3(5)
©
ORSER > Res R R P. —C‘) _‘C‘ia) —Cf)—(_‘i")
64 65 f30 (9
CS _Céﬂ) _Cév)_cé(,)
) ) ¢
Ry Ryy Rye Ry, ng G’ -
0 Res Ry Re: _C;J _(_-;“) —C.fn 6
0 Ot Rog® Roglu poyeim %
| 0 0 o BN G 0

—ngg) 0 0 0
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(2.12)
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Pso
Pyoay = 3Py g + Pyl
s Pra
Pug oy 48ug 4 Deg, + Da, +2ag
, R ,. : P43 : Py 4 M e | W S L - g
%o Bag, g, 4 Tag Tug 4 ta -0+ =0
ay 6 & . :‘ 6 :
a, g, —Ea,+—ag
& A (2.16)
ay = 24
D= as andG = bt
T 120
T2 5
C 360
T3 _f;_
1 840
 J3
1680
fs
\n 3024
where,
Py + P,
Pyo — 2P, P3o — Py _Ps _ 130 41
L B e i T = e T = T =
Py + 2Py, Py —2P5; + 6Py, _ Py — 2Py +2Py =ﬁ
Ty = 6 =133(= 2 T = 6 fa 3 O
Py + Py, Pyo + 2Py, +2P,; _ Py + 2P, +2P,;
T T 30 A 42 :
Py + Py +2P5; — 6Py T. ‘PWT _ Pt Py T _ P +2P; +2P;,
L T e U ki 0
T = Pio + 3Py, + 6Py, + 6Py e Py + 24 + 12P;; + 24P, s Hﬂ
E 210 St 386 SET T
PP Pwt2Put2Pn o P3P k6Ppt6Py Py
62 120 T 360 + Tgy 840 T =150
AL Poo + 4Py, + 12P;; + 24Py; + 24P, S Poo + 5P, + 20P;, + 60P;, + 120]’“
= 1680 i 3024

We obtained the following expressions for a;;s and bis i.e

Qg = Prg Vk=1(1)(n+1) ,vm
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1 - =
b, ,Em—‘_iﬁ(u' Z(—l)’r'l‘,_,, ¥ 0y Zf 1) 1Py J¥m=12

r=0 r=0

o 1 1
1 . -
h"(ﬁﬁ‘“‘ 2(—1)’1’!)’,,,,, + ay Z(-l)'rii’,,,, + ag Z‘I"ll Py )YmMm=3

r=0 r=0

"“( T zt-l) T Pryer + 02 2,(—1) P+ :Z"”""--.‘ s

1
ap ) (1) TP ¥ m=4

r=0
g5 h 1 ' 1
by - _6_‘;3 xx E(P:n = Pa)B: +E(P10+P:u - 2Pa)By + E(Pm_le + 2P5; — 6Ps3)Po

= Jrm v gt 17
b= pman vV mtl<i<Zn-s ,1sms4 (2.17c)

Analysis of error estimation
The integrated formulation of the tau method often yields to better accuracy of the tau solution .To

this end we consider the perturbed form of (1.14), ie perturbed error equation

"L(en(x))rul = Iﬂ- '.F H, (x)dx Hpsm+1(X) (3-1)

which is satisfied by by(ea(x))n+1 given by

(Cn(D)ay = 2tz (32)
c- mel

with¢,, replaced with by ¢, and Hpimea (%)

where ,

Hpymaa(X) Y et ey Tn—m+r+3(x)

(33)

Equating the corresponding coefficients of like powers of xin (3.1) and solving the
resulting algebraic equations lead 10 the value of @,, we then have
1&n! Tﬂ'ﬂ'l(=n(ﬂ)l (3.4)

b e
n-mﬂ)l =asxsb

£ :osxsb | (en(x))n+l 1= IC(

as an estimate of £

We shall camy out these steps for obtaining with various values of m+s =4 and
then generate the result fo obtain the recursive formula for ¢
Thecasem=1,s=3

From (1.1), the most general case for m =1 and s = 3 is given by

I:(Pm + Pyt Pppt® + Piat® + Pyyt?) (en(X))nsdt * J:(Pnn + Pyt + Poat® +
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b} a x
s de= <f Ha()de + Aoy () (35)
“where ,
PnTalx
(en(XDn = B2
n
(3.6)
that is,
- 3.7
@n(nyy = :—"‘ Ry x™ 0 4 kox™ + kyx" " 4 4 4 1) (3.7)
where,
= cm = =
FIUCL i = G ky=C)  elc.
Thus
x n (Kix"2 K AT e x" (35)
BENO e Bt [ St S }
\nserting (3.7) and (3.8) into (3,5) yields
?:g_{llrn1+s + Apxmt Fidgxms3 4 A"+ Agx™* 4 1) = f,C,(,':;“x"'s +
1
(n+3)
G) (n+4) (n+3) _ 16
(D + 2,000 - Dot genes 4 (2, (04D + 2,000 + 61 — TS
(n+3) (n+2)
rac12) . (n+2) _ TaCnyg Fafpyg ®
2f\+3 Jxma e (?1":1;5) +-E1C,E';;" +r,C,(|:‘;” SR = ‘n+1 n+2
) (n+4) n+3) . A(n42) r C(nu) '!c(ruz)_
Blatigemez 4, 0P+ BN+ BT H RGN
et i i D o
n+i n+1i o
Equating coefficients of corresponding powers of x from both sides of (3.9) gives
e (3.10a)
e " cn+3) ®
AEF R SEEEE e (3.10b)
(M45) | o ~(n+4) Tt S ETIC L TGO L) o s
KOG G G e g (3.100)
2 ~(n+5) (M+4) | 2 ~A(M+3) , . ~(N+2) T cnt3) | c(n2) et -
Ty 80, TG + TG, — l_n"sz '1_"1:3_ = nn:z = W:: (3.10d)
iiclioa: 117 Maali A. 1. et al.
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n = X

C(n+m+s) (n+5) ~(n+m+s-
ntmts—aCnys Cn+m+si32)

'v!l=1("- +5+4+ P') C(n+m+s)c(n+m+s—2)

n+m+s

n+m+s-2
C(n+m+s) (¢ (n+5)
n+m+s-3-n+s

(n+m4s5-2) ~(n+s)
Cn+m+s-3 Cn +s5=2

(n+m+s-2)

m A p(ndm+s) =
mn+s+r)C rein+s+r—=2)C s

(n+s)

¢ 2 5 (nemes=1) (nes=1) nts=1)

n+s-3 Kats 4y Cnemss-a Cnie-y (7 v ) L]
M=) M (n4s4r=3)" Rmasts

m ¢ -
M i(n4s+r-3) Rpise Nk (neser=1)Catteet

Kar
T YT Vm+s=4.

[y (ks 4r=3)Rin 541

(3.27)

Thus from (3.4), replacing ¢, with ¢, have the following expression for £°

C(Jl+m+s) C(n+s)c(n+m+s
n+m+s=2-n+s n+m+s=3

e = -

:P=l(n ts+ P') Cn+m+s

(n+m+s)c

(n+m+s-2)
n+m+s-2

C(n+m+s) C(n+s)

n+m+s=3-n+s

(n+m+s5-2) (n+s)
Cn.+rn +5=3 Cn+s—2

Mn+s+r)C

(n+s) C(n+m+s—l)c(n+l—l)

(n+m+s-2)

(it [ (n Skl 2) Cpymss—2

C(n+s—l) K3 T2

nts—3

Cnes—3 } LS nem+s—3 “nis—1
N, (nts+r=3)

i tmss vm+s=4
m o (+s+r=3)Rmis+1

Numerical Examples
In this section, we consider the application of the
tau system and general error estimation formula
obtained for the class of ordinary differential
equations characterized by m +s = 4to some
examples. The exact error is defined as
£ += max{|y(xc) - Yax)l}.

0<r<1,fork= 0(1)100,{xy} = {0.01k}

(4.1)
Example 4.1
A Second Order Linear Homogeneous

Table 1: Error and Error Estimates for Example 4.1

ST T e T e Al

(n+s+r=3)" Rmis+1

(3.28)

Variable Coefficient Problem Fox (1968)
y"(x) — 2(1 + x*)y(x) = 0(4.2a)
y(0)=1y'(x) = 0(4.2b)
with true solution

y’(:r)=e”z ROt =FI
For thiscase m=2,s =2. See table 4.1 for

numerical results. The numerical results were
presented in the tables below the examples.

Errorl Degree(n 2 3 4 6
R 782%x10°  6.34x10°  3.38x107° 1.90% 107
£ 8.57x 107? 8.76x 107* 9.00x 10~° 3.83x 1077

Example 4.2
A Fourth Order Non-Homogeneous Constant
Coefficient Problem

Ly(x) = y™(x) — 3601y"'(x) + 3600y(x)
© +1800x7 (4.3a)

Jntegral varianit of the Tau methods
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0 = '
);(1) L y()= 1,3"(0y = Ly"(0)
with the exact solution (4.3h)
— 8
y(x)= 1+ <t Sinhy (4.30)
C

Table 2:
2: Error and error estimates for

example 4.2
ErroriDe;
——\g—\—\_\_
& ree( 2 3 4 6
e I
£ Ry R R g 423
pe <4 X X
10=* 1078 j0-10 10713
g 1.37 210 550 8.60
x x x X
107 1077 1010 1g-12
Example 4.3

A Fourth Order Homogenaous Constant
Coefficient problem

Ly(x) = y"(x) — 4y(x) = 0,
0 < x < 1(4.4a)

0 =1 y'(0)=0 y“(0)=2,

"(0)
= (4.4b)
with analytic solution
VX 4o —V2X
y(x) = b N (4.4c)

2
The Numerical results are presented in Table 3
below

Error/Degree( 2 3 4 6
n)
£ bI7ON G 7 2.7 0 93]
X X X X
SO i 0EEen 0281 050
£ 493 1.46 1.93° 7.61
X X X X

T A g T D

Results and Discussion

The Lanczoserrorestimation procedure is
applicable to the class of first order linear ODEs
with polynomial coefficients defined in the

interval [0,1]. The procedure is restricted to first

order differential system which is not good

enough. The method of Fox can handle similar

Maiden Edition
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-t e e e ——ee pa
The Numerical ex
table 4.2 pe|oy (

Davey(1980) an,

amples ara Presented in
see Delves (1976),
d Conte (1996)

Table 3: Error ; i
s and error estimate for example

g;c;bletr::“ofnzrtde;eonneer:lnq of :igher orders lhgn
application. The error e m‘ l A b
Ll stimation of Onumanyi
and Ortiz gives accurate due to the idea of Tau
method .The idea is not economical in terms of
computing because it involves matrix inversion
of at least (m+s) dimension .Our present error
estimation technique is extended to the class of
ODEs
characterized by m+s = 4, where m and s are th
e order of ODE and the number of overdetermin
ationrespectively and
this shows a remarkable improvement over the
earlier works done by these people. on the error
analysis of the Tau method as its leads to error
estimation formula with wider scope of
application. Also this estimate does not involve
any iteration for linear problems nor matrix
inversion. It is observed that perturbing the
integrated error equation appears to improve the
accuracy of the error estimate significantly. The
results obtained in the present work
demonstrate the closeness between the exact
error of the tau method, thus error estimate of
the t-method is effective and reliable.

Conclusion

The integrated form of the tau method for the
solution of Initial Value Problems (IVPs)
involving at most four tau parameters has been
presented. The error estimate is good, accurate
as it closely captures the order of the
approximant, This is better achieved than for the
case of the differential form thus lending
credence to the preference of the former. This
may be due to the higher order perturbation term
which the integrated formulation of tau method
involves.
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