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The ordered statistics (OS) scheme is an effective constant false alarm rate (CFAR) technique deployed
in many radar systems. It is widely deployed because of its simplicity and effectiveness under condi-
tions of both homogeneous and non-homogeneous radar returns. However, the problem of inaccurate
censoring typically degrades its performance since it is often difficult to accurately determine the actual
number of interfering targets and clutter edges in the reference window per time. In this article, we
address this problem based on the principle of discriminant analysis (DA) towards automatically and
effectively estimating the kth rank ordered element of the OS scheme. Our scheme, termed the DA-OS
scheme, works without requiring a priori knowledge about the statistical characteristics of the input
radar returns. The results obtained via Monte Carlo simulation indicate that the DA-OS scheme achieves
a small CFAR loss of about 0.392 dB relative to the cell averaging (CA) scheme under conditions of
homogeneous radar returns at a probability of detection of 0.5. It outperforms other notable traditional
schemes, including the CA, smallest-of CA, greatest-of CA, and the fixed OS schemes under conditions
of non-homogeneous radar returns. Finally, it provides a number of desirable qualitative characteristics
as against other existing censoring techniques.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Radar systems are highly useful in many remote sensing ap-
lications, for example, they are invaluable in the recent fourth
ndustrial revolution, which encompasses the control of industrial
obots to sense and avoid collision [1], for speed control of mobile
ndustrial machines, monitoring of industrial environments for
ault identification, location and security purposes [2], as well as
or object and proximity detection [3], and in covert communica-
ions [4,5]. Other classic areas concerned with radar usage include
he weather [6], agriculture [7], military, geological [8], civil [9],
nd aviation industries [7], to name but a few. These automotive
pplication areas depend on radar sensors integrated with pro-
essors and controllers designed to improve the detection, safety,
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forecasting, security, and productivity of these respective indus-
tries [10,11]. However, in order to guarantee the effectiveness of
radar systems, it is imperative to deploy effective constant false
alarm rate (CFAR) schemes within such radar systems towards
ensuring that their false alarm rates are kept below a predefined
value to prevent erroneous operation.

There are some classic and simple CFAR schemes that can
be deployed in the above-mentioned radar application areas.
For example, the cell averaging (CA), smallest-of cell averaging
(SOCA), greatest-of cell averaging (GOCA) are fundamental meth-
ods deployed pervasively across many radar systems [12]. Most
other schemes are often derived or based on the CA and its
variants [13–15]. However, the CA has a key limitation in its
performance under non-homogeneous conditions, where radar
returns within the reference cells contain multiple interfering tar-
gets and/or clutter returns. Under such non-homogeneous condi-
tions, the CA scheme incurs increased false alarm rates at clutter
edges as well as target masking in the presence of interfering
targets. The SOCA scheme was proposed to resolve the problem
of target masking under conditions of multiple interfering targets,

however, it presents very high false alarm rates at clutter edges.
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n the other hand, the GOCA scheme was introduced to address
he false alarm rate problem at clutter edges, however, it fails to
olve the problem of target masking. Many other methods have
een proposed towards realizing an all-encompassing scheme
hat addresses both the problem of target masking as well as
alse alarm rate reduction at clutter edges. However, the classic
ork of Weiss noted that such a scheme may almost never be
eveloped [16, pp. 111], which has been further affirmed in [14,
7]. Notwithstanding, some other classic theoretical works have
uggested that the ordered statistics (OS) scheme may suffice as
possible candidate technique capable of addressing both prob-

ems [18,19], a fact that has gained much approval from a number
f past and recent practical and comparative works [20,21].
Basically, the OS scheme works by reordering the radar re-

urns within a reference window in an ascending order based
n their relative energy levels. In this article, the term ‘‘sample’’
nd ‘‘radar returns’’ are often used interchangeably to refer to
he entire set of received energy values of the reflected radar
ignal stored in the reference window. Thus, a sample typically
omprises elements, where an element denotes a single discrete
nergy value of the radar return stored in a single cell of the
eference window. Further description of the reference window is
rovided in Section 3.1. By ordering the elements in the reference
indow, the OS scheme selects a single ordered element (i.e. the
th sample element) to serve as the estimated noise value in
he reference window. Essentially, because the accuracy of the
stimated noise value determines the degree of effectiveness of
he OS scheme, it is thus pertinent that the choice of the kth
element should be determined as accurately as possible. If the
kth element is accurately determined, the OS scheme typically
solves the target masking problem as well as reduces the false
alarm rate at clutter edges [13]. However, the existing challenge
is that it is generally difficult to develop practical methods that
are able to accurately and dynamically determine the kth rank
ordered element of the OS scheme based on a definite metric that
measures the degree of homogeneity/non-homogeneity in the
reference window. Furthermore, such a method must be able to
perform effectively without requiring a lookup table to determine
the appropriate threshold value needed to maintain a predefined
probability of false censoring. These qualitative requirements are
discussed in Section 6. In this regard, the term ‘‘censoring’’ refers
to the identification and removal of non-homogeneous radar
returns present in the reference window of a CFAR scheme in
order to reduce their detrimental effects on the performance of
such a scheme. However, most attempts at dynamically estimat-
ing the kth rank ordered element (as highlighted in Section 2)
are fraught with certain limitations (as discussed qualitatively in
Section 6), which leaves ample room for further improvement
and innovative ideas as introduced in the present article.

Thus, in this article, we explore a method that accurately de-
termines the exact number of interfering targets as well as clutter
edges within the reference window of the OS scheme based on
the principle of discriminant analysis (DA). Our proposed scheme
termed the DA-OS scheme is able to accurately estimate the
number of interfering targets within a reference window without
a priori knowledge about its operating environment and without
the need to reconfigure the value of a specific probability of
false censoring. Our method provides an improved performance
under conditions of multiple interfering targets and clutter edges
within the reference window. We compare our method against
the OS scheme based on the optimum criterion posed in [22]
and with other well known schemes such as the CA, SOCA, GOCA
schemes. Results obtained are presented and discussed in order
to demonstrate the improved performance of our approach.

The subsequent contents of this article are organized as fol-
lows: We discuss the relevant literature in Section 2. The pro-
posed DA-OS scheme is introduced in Section 3, including its
2

operating algorithm and time complexity analysis. Our method
of simulation and analysis is presented in Section 4. Results and
discussion are highlighted in Section 5, whereas a qualitative
assessment of the DA-OS scheme relative to existing censoring
methods is presented in Section 6. The article is concluded in
Section 7.

Notation. We used upper-case letters XN to denote a set of
unordered elements, where N is the total number of elements
in the set, and lower-case letters xn denote the actual value of
each element in the set, where n represents the index of each
element; the set of ordered elements arranged in an ascending
order is denoted by upper-case letters with a bracketed subscript
X(N) and its corresponding nth ordered element is denoted as x(n);
F denotes the mean of the elements in the set F ; the calligraphic
symbol O(·) denotes the time complexity, whereas the symbol
‘←’’ denotes a memory assignment operation; the symbol ‘‘∼’’
eans ‘‘distributed as’’; Y ∼ CN (0, σ 2) denotes a complex Gaus-
ian distributed random variable Y with zero-mean and variance
2.

. Related work

There are some methods proposed for automatic censoring of
eference cells such as the automatic censored (AC) CFAR method
y Himonas & Barkat [23], which simply determines whether the
ell under test (CUT) is in the clear (thermal noise only) or clutter
egion. Note that the term ‘‘CUT’’ refers to the cell for which a
hreshold value is to be computed, which is further depicted in
ection 3.1. If the CUT is determined to be in the clear region, then
ells in the clutter region are censored. However, if determined to
e in the clutter region, then the cells in the clear region are cen-
ored. Subsequently, only the cells in the uncensored region are
ombined to estimate the noise level in the test cell. In addition
o being largely heuristic, this approach is quite computationally
ntensive and it depends on a continuous choice and change of the
caling constant in order to achieve a desired probability of false
ensoring. In the present context, the term heuristic implies that
here exists no deterministic function or metric to measure the
egree of homogeneity as well as non-homogeneity within the
eference window, instead, such conditions of homogeneity and
on-homogeneity are determined in an iterative manner based
n whether the difference between the present and previous
lement values within a reference window exceeds a certain
redefined margin or not. A similar approach to the AC was
roposed in [24] called the automatic censored cell averaging
ACCA) CFAR, which differs from the AC only by computing the
ean of the uncensored cells to serve as the estimated noise level

n the test cell. By being based on the AC method, the ACCA-
FAR scheme inevitably inherits its limitations as well, while
ncurring additional complexities. An application specific ordered
ell averaging-CFAR (OCA-CFAR) was proposed in [25] for de-
ecting events in time-series signals, particularly considering its
pplication to seismic signals. The OCA-CFAR was demonstrated
o yield improved performance compared to the CA, SOCA, GOCA,
nd OS schemes under different window sizes and false alarm
ates.

A few other automatic methods have been proposed follow-
ng the introduction of the AC and ACCA methods, such as the
C-CFAR for heterogeneous Gaussian clutter (HGC) termed (AC-
GC) [13], the ACCA based on ordered data variability (ODV)
ermed ACCA-ODV [26], the automatic dual censoring cell-
veraging (ADCCA)-CFAR [12], the generalized ordered statistics
GOS) methods combined with CA termed GOSCA, with greatest-
f termed GOSGO, and with smallest-of termed GOSSO [27].
lthough these methods have been shown to perform well under



A.J. Onumanyi, H. Bello-Salau, A.O. Adejo et al. Physical Communication 43 (2020) 101215

d
f
k
w
p
a
h
n

d
w
p
t
o
n
a
f
f
i
e
r
l
D
i
b
d

3

p
r
t

3

d
f
w
s
s
c
f
d

a
f
a
i
n
s
t
r
t
i
t
r
s
i
m
b
d
t
c

Fig. 1. Discriminant Analysis-based CFAR Scheme.

ifferent conditions, nevertheless, they have unique limitations,
or example, the ADCCA does not automatically determine the
th rank ordered element, instead, it keeps the kth element fixed,
hich limits its capacity for automation in the context of the
resent article. The AC-HGC compares the difference between
djacent elements similar to the AC and ACCA, thus being of a
ighly heuristic nature. The GOSCA, GOSGO, and the GOSSO do
ot automate the choice of the kth rank ordered element.
Above all, most censoring methods best known to us are

esigned to determine the first transition edge within a reference
indow in order to serve as the kth element for censoring pur-
oses. Then, the residual cells above this kth point are considered
o be the group of non-homogeneous elements. The inability
f most censoring methods to accurately determine the exact
umber of interfering targets within a reference window presents
major problem, for example, if the actual number of inter-

ering targets supersedes the estimated kth element, then the
alse alarm rate of the OS scheme is increased. Furthermore, it
s often assumed that only a single leading clutter edge should
xist within a reference window, thus, multiple clutter edges and
egions may go undetected by these existing methods, which
eads to an increase in the false alarm rate of the OS scheme.
ifferent from existing methods, we introduce a new method
n the present article that seeks to address the above problems
ased on the principle of discriminant analysis, which will be
iscussed in the next section.

. Discriminant analysis-based OS CFAR scheme

In this section, we describe the DA-OS scheme and then
resent the motivation and working principles behind the algo-
ithm as deployed in the scheme. This section concludes with the
ime complexity analysis of the DA-OS algorithm.

.1. The DA-OS scheme

Fig. 1 presents the block diagram of the DA-OS scheme as
eployed within the front-end of a typical radar system. Here, we
ocus on the receiver side of the system since we are concerned
ith detecting signals within a set of radar returns. Consequently,
imilar to most other schemes [18], the front-end of our DA-OS
cheme consists of a single transceiver antenna (since we are con-
erned with the case of a monostatic radar system), a bandpass
ilter, the analogue-to-digital converter (ADC), the square-law
evice and the non-coherent integrator.
3

Essentially, radar returns are received via the input antenna
nd filtered to within the desired frequency range of the bandpass
ilter. The filtered elements are then digitized in the ADC block
nd magnitude squared in the square-law device towards obtain-
ng the energy of each sample element. In this article, we focus on
on-coherent detection as can be observed following the inclu-
ion of the non-coherent integrator block in Fig. 1. We considered
he case for non-coherent integration because most practical
adar systems often work by processing a set of averaged (i.e. in-
egrated) radar returns obtained over a sensing period towards
mproving the detection accuracy of radar systems. Furthermore,
he integration process minimizes the required signal-to-noise
atio (SNR) needed to achieve very high detection rates for radar
ystems [28]. The integration block adopts a non-coherent video
ntegration process since we are interested only in the signal’s
agnitude for the sake of detection and not in its phase as may
e required in other application areas, for example, in the Doppler
etector [28]. By adopting pulse integration, it is well known that
he noise variance reduces with an increase in the number of non-
oherently integrated pulses NP , thus improving the detection
rate of the scheme [28]. Possible integration techniques including
the binary integration method have been well studied to improve
the detection performance of radar system [29,30].

The elements of the output sample XN = {x1, x2, x3, . . . , xN}
from the non-coherent integrator are fed serially into a shift
register wherein signal processing typically ensues. In the rest
of this article, we refer to the shift register as the reference
window, which determines the number of radar returns to be
processed per time. By feeding the sample elements serially into
the shift register, radar observers are made to visualize the refer-
ence window as though sliding in time over the range of input
radar returns being fed into the register, as will be discussed
in Section 5. In our design, each cell in the reference window
refers to the range cell of a typical radar system. Thus, the
reference window can be divided into a set of leading cells
i.e x1, x2, x3, . . . , xN/2, the cell under test (CUT) i.e. x0, and a
set of lagging cells i.e. xN/2+1, xN/2+2, . . . , xN . However, in most
schemes, such as the CA, SOCA, GOCA and OS schemes, the radar
return in the CUT is often expunged from the reference window
during the computational process, and as such, only N sample
elements from both the leading and lagging cells are processed
per time towards computing the threshold value of the CUT.
Consequently, the size of the reference window is considered to
be N . Thus, Fig. 1 shows that the radar return x0 in the CUT
is expunged and passed to the comparator, while other radar
returns in the reference window are passed to the reordering
processor for onward processing.

In Fig. 1, the reordering processor reorders the elements of
the input sample in an ascending order, where x(1) < x(2) <

x(3) < · · · < x(N). These reordered elements are then passed to
the DA processor, wherein the DA-OS algorithm is deployed (to
be discussed in Section 3.2). The DA processor estimates the kth
rank ordered sample element and outputs the radar return x(k)
at the kth cell. The x(k) sample element is considered to be the
estimated noise level, which is then multiplied by a threshold
factor T (often predefined by the user) in order to obtain the final
threshold value Z for the radar return in the CUT per time. The
comparator then compares x0 with Z to output a final decision,
which can be any of two outcomes: if x0 > Z , then a target return
is detected in the CUT, however, if x0 ≤ Z , then no target is
detected in the CUT except noise.

Following the above description of the DA-OS scheme, it is
noted that the choice of the kth rank ordered element determines
how accurate the noise estimate will be, thus determining the
performance level of the OS scheme. Consequently, our aim is

to construct an algorithm that can accurately and automatically
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stimate the kth rank ordered element of the OS scheme without
priori knowledge of the characteristics (i.e. distribution) of the

input radar returns. We discuss such an algorithm in the next
subsection.

3.2. The DA-OS algorithm

The DA-OS algorithm is motivated following the performance
f the well-known Otsu’s method deployed for binary image
egmentation in many image processing applications [31]. Here,
imilar to the approach used in the Otsu’s method, we construct
n effective algorithm deployable for target detection in radar
ystems for remote sensing applications. To the best of our un-
erstanding, such an approach has not been explored for radar
ystems prior to the present study.
Essentially, the principle of discriminant analysis used in

tsu’s method aims to compute the between-class variance (BCV)
alue for every pixel in the histogram of an input image [31].
t has also been applied in cognitive radio applications [32,33].
he BCV is a measure of the degree of separation between two
lasses. To compute this measure as deployed in Otsu’s method,
he histogram of an input grey-scale image is first generated, and
ach bin of the histogram is used to bifurcate the image into
wo classes, i.e. the foreground and background pixels. Then, the
CV value corresponding to each bin is computed, and the bin
i.e. the pixel value) with the highest BCV value is selected to be
he optimal threshold value for effective image segmentation.

Following the above explanation, in the present article, we
ote that since the BCV value is capable of measuring the degree
f separation between two classes of an input sample generated
rom the same dataset (for example, an image in the case of Otsu’s
ethod), consequently, such a measure can as well be applied

o measure the degree of homogeneity/non-homogeneity in the
ase of radar systems. Thus, following Otsu’s method in [31], our
dea postulates that if the measured input radar returns comprise
oise-only elements (i.e. in the homogeneous condition), then
he computed BCV value per sample will be quite small since
he difference between the mean of any two classes formed in
his case will be zero (or approximately zero). On the other
and, if the measured returns in the reference windows contain
ome signal components, then the BCV value will be large since
ne of both classes will contain signal elements, and thus the
ifference between the means of any two classes from the set of
adar returns will be large, which indicates a non-homogeneous
ondition.
Consequently, we constructed the DA-OS algorithm in order to

est the validity of the above hypothesis towards improving the
erformance of the known OS scheme and results in this regard
re discussed in Section 5. The input to the DA-OS algorithm is
he ordered sample X(N) = {x(1), x(2), x(3), . . . , x(N)} obtained from
both the leading and lagging cells of the reference window. The
aim of the DA-OS algorithm is to compute the BCV value of each
element located in the CUT at any point in time, particularly
as the CUT sweeps through the reference window. Thus, the
algorithm computes the BCV of each element n in the CUT by
averaging the BCV values computed for all other cells in the
reference window. Hence, in order to compute the BCV value
of each nth element located in the CUT, we initiated an index
m = 1, 2, 3, . . . ,N used to indicate the BCV values of all other
elements in the reference window. Thus, for each mth index, the
elements in the reference window are first bifurcated into two
classes X L and XU , where X L

= {x(1), x(2), . . . , x(m)}, and XU
=

x(m+1), x(m+2), . . . , x(N)}, and the entire input sample X(N) is then
X(N) = {X L, XU

}. Then, the algorithm computes the means µL
m and

µU
m of X L and XU , respectively, for m = 1, 2, 3, . . . ,N as follows:

µL
m =

1
m

m∑
x(n), (1)
n=1 w

4

µU
m =

⎧⎪⎨⎪⎩
1

N −m

N∑
n=m+1

x(n), if m < N

0, if m = N

(2)

and the probabilities per mth index pLm and pUm of X L and XU ,
respectively, are computed as follows:

pLm =
m
N

, (3)

pUm =
{
1− pLm, if m < N
0, if m = N.

(4)

Note that for m = N , only one class exists, i.e. the X L class, and
thus the mean µU and the corresponding probability pU of XU in
this case will be zero, as indicated in Eqs. (2) and (4), respectively.
Thus, the DA-OS algorithm proceeds to compute the BCV value F
of each mth index as [31]

Fm = pLm · p
U
m

[
µL

m − µU
m

]2
, for m = 1, 2, 3, . . . ,N. (5)

Consequently, the algorithm computes the mean of Fm to be the
average BCV value of each nth element located in the CUT per
time as follow

F n =
1
N

N∑
m=1

Fm, for n = 1, 2, 3, . . . ,N. (6)

Eq. (6) reveals that F n is computed for each element n in
the reference window as the CUT sweeps across each cell in the
reference window. Therefore, F n is a stable metric for measuring
the degree of homogeneity in the reference window because the
BCV value of all elements in the reference window (see Eq. (5))
are averaged towards computing the BCV value of the element in
the CUT. Thus, the variance of the BCV values in Eq. (5) is greatly
reduced by the averaging process in Eq. (6). This provides the
DA-OS algorithm with an intuitive mechanism for determining
the actual number of interfering targets K as well as clutter
edges present in the reference window, particularly as the CUT
sweeps across each element in the reference window. Thus, K is
determined as follows:

K =
{
0, if F n < θ

K + 1, if F n − F n−1 > θ and K < N
2 − 1.

(7)

where θ is a threshold value used to determine whether the refer-
ence window contains homogeneous elements or not. Essentially,
θ can be assigned a small value, typically θ = 0.5 as in our
experiments since homogeneous radar returns in the reference
window will always produce very small F n values. The choice
of θ = 0.5 is further valid since for a homogeneous reference
window, i.e. when µL

≈ µU , we obtain Fm ≈ 0, which could be
made equal to zero by applying a flooring function. Nevertheless,
since a flooring function was not used, we consider θ = 0.5 as a
valid threshold value across a wide range of conditions as will be
shown in the graphical results of Section 5.1.

In order to apply Eq. (7) effectively, the DA-OS algorithm ini-
tializes K as K = 0 and F n−1 as F n−1 = 0. These initial values are
assumed to be valid since the scheme cannot determine whether
or not an interfering signal is present in the reference window
until the content of the first cell in the CUT is processed. However,
these parameters are subsequently updated by the algorithm
after each cell in the CUT is processed (see step 14 of Algorithm
1). Furthermore, the condition K < N

2 − 1 is introduced in Eq. (7)
in order to ensure that K is not incremented beyond half of the
eference window size. This measure prevents the DA-OS scheme
rom incurring high false alarm rates at clutter edges since only
lutter returns are able to occupy the entire half of any reference
indow [16].
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Thus, since the elements in the reference window are ordered,
hen the kth rank ordered element for the DA-OS scheme can be
btained easily as

= N − K (8)

y using Eq. (8) to obtain the kth rank ordered element of the OS
cheme, the DA-OS algorithm can then easily output x(k) as the
inal estimate of the noise level in the reference window, which
ill be multiplied by the threshold factor T (as in Fig. 1) towards
btaining the final threshold value Z , which reads

= T × x(k) (9)

here the value of T was computed via Monte Carlo simulation.
o determine T , random samples of additive white Gaussian noise
lements (i.e the homogeneous condition) were generated during
ach Monte Carlo trial and then the value of T was successively
aried and applied per CFAR scheme and their resulting PFA values
ere computed using Eq. (11). The PFA results obtained as a

unction of T is plotted as discussed in Section 5.2.1 and then
he appropriate choice of T that corresponds to a desired PFA rate
as selected per CFAR scheme. Further, a summary of the entire
lgorithmic procedure to execute the DA-OS scheme is presented
n Algorithm 1.

.3. Time complexity analysis

In order to analyse the time complexity (TC) of the DA-OS
lgorithm, we considered the number of machine instructions
equired to execute the algorithm as a basis for approximating the
C. To achieve this, we excluded all constant factors within the
teps of the DA-OS algorithm in order to ensure that its running
ime scales only according to the input sample size N , particularly
s N tends to infinity. Similarly, we excluded lower order terms
n order to asymptotically describe the TC [34]. Thus, Eqs. (1)–(5)
an be considered to be evaluated in constant time only once in
teps 5–7, which reduces to a TC of O(1) per step. The reordering
rocess of the input radar returns in the reference window can be
chieved within a TC of O(N), particularly by using some of the
est sorting algorithms, for example, the Timsort algorithm [35].
ince there are two nested for loops between steps 3–21 of
lgorithm 1, we obtain in this case an asymptotic TC of O(N2).
hus, by neglecting lower order terms, the approximate overall
C of the DA-OS algorithm for the CUT sweeping through the
ntire reference window is given as TC ≈ O(N2). However, the
pproximate TC for computing the threshold value of a single cell
ocated in the CUT is TC ≈ O(N) since only the for loop between
teps 4–11 will be considered in this case. The TC of the DA-OS
lgorithm is compared with other well-known CFAR algorithms in
able 1. There, it can be seen that the DA-OS algorithm suffices
s a more complex algorithm, and thus slower as against the
A, SOCA, GOCA, and OS schemes. However, we shall show in
ection 5 that although complex, the DA-OS scheme offers better
etection, as well as lower false alarm rates as against other ba-
ic schemes, particularly under conditions of non-homogeneous
adar returns.

. Method of simulation and analysis

.1. Simulation

A monostatic radar system was assumed in our simulation
ince a single antenna was considered in our design as shown
n Fig. 1. All transmission parameters leading to the simulated
eceived returns were assumed to be appropriately designed,
hus guaranteeing that the range gates of the radar system were
pened accurately according to the pulse repetition frequency
5

Algorithm 1: DA-OS Algorithm
Input:

1. Ordered radar returns in the reference window:
X(N) =

{
x(1), x(2), ..., x(N)

}
, where

x(1) < x(2) < x(3) < ... < x(N);
2. BCV Threshold: θ = 0.5;
3. Reference window size: N;
4. Threshold factor: TDA

Output:

1. Number of interfering targets: K ;
2. kth rank ordered element: k;
3. Threshold value: Z

// Initialize variables
1 K ← 0;
2 F n−1 ← 0;
// The BCV will be computed for each cell n located in the CUT as

the CUT sweeps through each cell in the reference window
3 for n = 1 to N, do
4 for m = 1 to N, do
5 Compute µL and µU using Eqs. (1) and (2),

respectively;
6 Compute pL and pU using Eqs. (3) and (4),

respectively;
7 Compute F(m) using Eq. (5);
8 if m == N then
9 µU

= 0, pU = 0, F(m) = 0;
10 end
11 end
12 Compute F n using Eq. (6);
13 if F n − F n−1 > θ & K < N

2 − 1 then
14 K = K + 1; *Update the number of interfering targets in the

reference window*
15 else
16 K = 0; *No interferer was detected (i.e. homogeneous condition

detected)*
17 end
18 F n−1 ← F n; *Update the average BCV for the next CUT*
19 k = N − K ; *Obtain the kth rank ordered element*
20 Zn = TDA · x(k); *Obtain threshold value for the present CUT*

21 end
22 Return k, K , Zn

Table 1
Asymptotic Time Complexity of the different CFAR schemes.

CFAR SCHEMES

CA SOCA GOCA OS DA-OS

Asymptotic
Time
Complexity

O(N) O(N) O(N) O(N) O(N2)

(PRF). Consequently, we present simulated traces in Section 5
representing radar returns at different range cell indexes. Fur-
thermore, we considered the case for non-coherent integration
in our design because it reduces the very high and impractical
transmit power levels (SNR≈ 15–35 dB) often required to achieve
high detection rates (Pd > 90%) as in the case of single pulse trans-
mission. In this regard, a number of pulses NP were considered
in our simulation of the non-coherent video integration process.
These pulses were averaged per range cell in order to obtain the
final traces shown in the different graphs of Section 5.
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We simulated conditions of homogeneous noise-only radar
eturns using random elements drawn from a complex addi-
ive white Gaussian noise (AWGN) model X ∼ CN (0, σ 2) of
ero-mean and unit variance σ 2

= 1. For non-homogeneous
arget returns, the Swerling II model was used to simulate the
arget returns considered to be simple point scatterers fluctuat-
ng between pulses but constant in a single scan. Consequently,
ll targets in the CUT as well as other interfering targets were
imulated according to the Swerling II model. Clutter returns
ere modelled as a series of single targets occupying a set of
ontiguous range cells.
Having established the noise, target, interferer, and clutter

odels using complex AWGN and Swerling II models, respec-
ively, and in the absence of tractable mathematical analysis of
he BCV statistics, we used Monte Carlo simulation to conduct
nd analyse the performance of the different schemes as follows:

1. Let the total number of Monte Carlo trials be C , indexed as
c = 1, 2, . . . , C

2. NP pulses were generated using the different models for
the different radar environments, and averaged to obtain
the final received radar returns XN = {x1, x2, x3, . . . , xN}
per environment, where N refers to the reference window
size.

3. The different CFAR schemes were subjected to XN according
to their respective working principles, including the DA-OS
scheme. Recall that for the fixed OS and DA-OS schemes, XN
will be ordered as X(N) prior to further processing, whereas
the unordered sample XN will be processed in the CA, SOCA,
and GOCA schemes, which do not require any pre-ordering
process.

4. The series of estimated threshold values Zn obtained via the
different techniques were then compared to XN .

5. The probability of detection Pd and probability of false
alarm Pfa were computed per trial c , to be described in the
next subsection.

6. The process was repeated C times and averaged to obtain
the average Pd and Pfa values against different SNR values
as well as against different clutter cell positions as reported
in Section 5.

4.2. Analysis

In order to analyse the different CFAR schemes, the elements
comprising a single sample of radar returns XN = {x1, x2, x3, . . . ,
xN} located in the reference window were compared against
their corresponding threshold values ZN = {z1, z2, z3, . . . , zN}
estimated per Monte Carlo trial c = 1, 2, 3, . . . , C . Then, the Pd
and Pfa of each technique were computed respectively as follows:

Pd =
1

C × N

C∑
c=1

N∑
n=1

Dc,n (10)

fa =
1

C × N

C∑
c=1

N∑
n=1

Fc,n (11)

here,

c,n =

⎧⎨⎩
1, if xc,n > zc,n, given that Gc,n = 1,

for n = 1, 2, 3, . . . ,N; c = 1, 2, 3, . . . , C
0, if otherwise

(12)

nd

c,n =

⎧⎨⎩
1, if xc,n ≥ zc,n, given that Gc,n = 0,

for n = 1, 2, 3, . . . ,N; c = 1, 2, 3, . . . , C (13)

0, if otherwise d

6

able 2
imulation parameters and their respective values.
Parameter Values

Total number of Monte Carlo trials, C 103

Number of pulses, NP 10
Reference window size, N 16
kth element of the fixed OS scheme 12

where we recall that xc,n refers to the value of a single radar
return located in a single cell index n per Monte Carlo trial c ,
whereas zc,n refers to the corresponding threshold value esti-
mated for the same cell index n per trial c. Gc,n denotes the binary
ground-truth dataset comprising zeros and ones, where Gc,n = 1
indicates that a signal truly exists in the CUT n per trial c , whereas
Gc,n = 0 signifies that in truth no signal exists in the CUT except
noise. It is noted that Gc,n is created a priori in order to compute
accurately the values of Pd and Pfa.

5. Results and discussion

The DA-OS algorithm was evaluated and compared against
other known schemes such as the CA, SOCA, GOCA and OS
schemes. In this section, first, we present and discuss results
to illustrate the dynamics of the BCV value. Then, we discuss
results obtained under conditions of homogeneous and non-
homogeneous environments. Table 2 highlights the parameters
and their respective values as considered in the Monte Carlo
simulation. The kth element of the fixed OS scheme, without
any automatic censoring procedure, was obtained using the op-
timum criterion of k = 3

4N [22]. All codes and simulations were
onducted in MATLAB R2019a.

.1. Adaptivity of the proposed method

This subsection presents and discusses results to demonstrate
he adaptiveness of our proposed method based on the BCV value.
n this regard, we considered three different radar operating
nvironments, which included single targets located in homoge-
eous noise radar returns, multiple interfering targets within the
eference window, and radar returns situated at different clutter
ower levels. For each condition, we ensured that a predefined
fa = 10−3 rate was maintained for a window size of N = 16.
onsequently, an estimated threshold factor of TDA_OS = TOS =
.72 was used and maintained across each operating condition for
ur proposed method and the fixed OS(12) scheme, respectively.
n the following subsections, we illustrate and discuss how the
stimated BCV value would typically adapt under different oper-
ting environments in order to estimate accurately the kth rank
rdered element of the OS scheme. Our findings are presented as
ollows:

.1.1. Under single target in homogeneous return
Here, we discuss results that illustrate how our proposed

ethod operates in the presence of a single target within a
eference window comprised of homogeneous noise-only radar
eturns. First, Fig. 2(a) displays the simulated target returns lo-
ated at the 10th, 40th, and 80th range cells, respectively, while
ther cells simply contained noise-only radar returns. Although
imulated, nevertheless, under real-life conditions, these target
eturns could correspond to echoes emanating from objects lo-
ated within the operating space of a mobile industrial robot,
.e. in the case of object detection, or they may belong to echoes
manating from an intruder(s) lurking within an industrial envi-
onment in the case of measurements from a security monitoring

evice. More generally, they could emanate from a wide range
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Fig. 2. Estimated BCV and kth rank ordered value under single target returns in homogeneous radar returns.
Fig. 3. Estimated BCV and kth rank ordered value under multiple interfering targets radar returns.
of application areas, which are not limited only to the above-
mentioned examples. By using a window size of N = 16, we
ensured that only one target return was captured within the
reference window during the entire simulation period since these
targets were well separated in the range cells (i.e separated by
more than 16 range cells) as seen in Fig. 2(a).

Fig. 2(b) displays the BCV value computed by our method over
the entire swept range cells. Essentially, if a high BCV value is
computed at any range cell, it typically implies that there exists
non-homogeneous radar return(s) within the reference window
at that point in time, whereas, if a low BCV value (below the
threshold line) is computed at any range cell, then it implies
that all elements within the reference window at that point in
time are homogeneous in nature (i.e. they are elements of equal
average power level). Thus, following Fig. 2(b), a relatively high
BCV value of about 1 was computed for the 1st range cell up until
the 10th cell because the first target return located at the 10th cell
was situated within the reference window, thus confirming the
presence of a non-homogeneous element (i.e. the target return)
at the 10th cell. Consequently, it can be explained easily that the
low BCV value computed at the 10th cell occurred because the
radar return in the 10th cell was expunged for being in the CUT
at that point in time, thus leaving only noise radar returns (i.e. ho-
mogeneous elements) within the reference window, thus leading
to the low BCV value computed at that point in time. However,
as soon as the CUT progressed to the 11th cell, it is seen that
the BCV value immediately increased above the threshold line
because at that point, the target return was once again situated
in the leading cells of the reference window. Nevertheless, as the
reference window progressed beyond the 16th cell, the BCV value
again dropped towards zero since the target return had com-
pletely progressed out of the reference window, thus leaving only
homogeneous noise-only returns within the reference window.
7

Further, Fig. 2(b) shows that the above process for the com-
puted BCV value was repeated for the second target, starting from
the 32nd cell where the BCV value increased above the threshold
line. As expected, the BCV value dropped rapidly towards zero
at the 40th cell since the target return was now in the CUT and
thus expunged from the reference window. The process correctly
repeated itself for the third target located at the 80th cell. Here,
we observed that the BCV value rose at the 72nd cell above the
threshold line, and then dropped below the threshold line at the
88th cell because at that point, the target cell was now completely
out of the reference window. Thereafter, a low BCV value, way
below the threshold line, was computed for the cells beyond the
88th range cell, thus indicating that no target return existed in
the reference window after the 88th cell.

Consequently, following the deterministic behaviour of the
BCV value, Fig. 2(c) shows that our method accurately estimated
the presence of a single target return (i.e K = 1) within the
reference window at the relevant range cells. Here, K represents
the total number of targets within the reference window, thus
implying that the kth element was N − K , i.e the 15th element
in our case for N = 16. Hence, by accurately estimating the
kth element for the OS scheme, our method selected the OS(15)
scheme for use. Thus, Fig. 2(a) displays the adaptive threshold
values computed based on our method along with the threshold
values estimated using the OS(12) scheme (i.e based on the kth =
12 element). Under both configurations, the three targets were
successfully detected thus implying that our method performed
equally as well as the OS(12) scheme under the tested condition.
We note that the estimated K values in Fig. 2(c) are similar
because our algorithm was able to detect the single targets that
were present in the reference window per time. The energy of

the targets in Fig. 2(a) were set to the same value, however, it
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Fig. 4. Estimated BCV and kth rank ordered value under different clutter power levels.
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an be observed that they were well separated in the range cells.
hus, this ensured that only one target appeared per time in
he reference window during the entire simulation process, thus
esulting in the same K value as obtained in Fig. 2(c).

.1.2. Under conditions of multiple interfering targets
We simulated the presence of multiple targets as shown in

ig. 3(a) with targets located at the 20th, 40th, 46th, 50th, 60th,
3rd, and 66th range cells. A reference window size of N = 16
as maintained, which ensured that the 40th, 46th, and 50th tar-
ets were all within the reference window at the same time. This
reated the presence of three targets in the reference window
hen the CUT was situated at the 42nd range cell. Also, when
he CUT was situated at the 58th cell, then the 60th, 63rd, and
6th targets were all captured within the reference window at
he same time.

Following Fig. 3(b), it can be observed that when the CUT was
t the 12th cell, then the first target located at the 20th range cell
rifted into the reference window, which accounted for the high
CV value estimated from the 12th cell and onward. As expected,
he estimated BCV value dropped rapidly at the 20th cell since
he target in the 20th cell was expunged for being in the CUT at
hat point in time. The BCV value increased rapidly afterwards
ecause the target in the 20th cell reappeared in the leading cells
f the reference window.
An interesting observation can be noted at the 32nd range cell

hen the target at the 40th cell drifted into the reference win-
ow. At that point, Fig. 3(b) shows that the BCV value increased to
n average value of 1. However, this value soon increased again
t the 38th cell because the next target at the 46th cell drifted
nto the reference window, thus further increasing the computed
CV value owing to the presence of the two targets within the
eference window at that point in time. Notice that the BCV value
ropped at the 40th cell since it was expunged for being in the
UT. However, we observed that the BCV value did not drop
elow the threshold line as expected because although the 40th
arget may have been expunged, nevertheless, the target at the
6th cell was still within the reference window, thus preventing
he BCV value from dropping way down to zero. Similarly, the
CV value further increased at the 58th cell because the target
t the 50th cell, as well as the targets at the 60th, 63rd, and
6th cells were all captured within the reference window at the
ame time. This accounted for the four targets being situated in
he reference window at that point in time. Essentially, the BCV
alue increased accordingly to account for each target within the
eference window. Close observation of Fig. 3(b) indicates that the
CV value dropped at each target location since each target was
xpunged from the reference window when they were in the CUT.

onsequently, the trace of the BCV values in Fig. 3(a) dropped

8

elow the threshold line after the 74th range cell because all the
argets were now completely out of the reference window. The
CV value remained very low onward from the 74th range cell,
hich correctly indicated that no target existed beyond the 74th
ell.
Following the above dynamics of the BCV value, Fig. 3(c)

isplays the estimated number of targets K within the reference
indow throughout the simulation period at each range cell. The
th rank ordered element was then effectively calculated at each
oint as N − K , which enabled our scheme to accurately esti-
ate the adaptive threshold value for each range cell as shown

n Fig. 3(a). We note from Fig. 3(c) that our method correctly
stimated the presence of 7 targets, which tallied correctly with
he actual number of targets displayed in Fig. 3(a). Furthermore,
ur method demonstrates its superiority as against the OS(12)
cheme by adapting effectively to detect the low SNR target
ocated at the 50th range cell. The fixed OS(12) scheme failed in
his regard since it lacked the capability to effectively adapt the
th rank ordered in order to improve the performance of the OS
cheme under these dynamic non-homogeneous conditions.

.1.3. Under conditions of different clutter power levels
We considered different clutter power levels within the ref-

rence window as shown in Fig. 4(a). The first clutter occurred
etween the 10th–50th range cells at an average clutter-to-noise
atio (CNR) of 10 dB The second clutter was situated between the
0th–110th range cells at an average CNR of 20 dB, whereas the
hird clutter appeared between the 150th–180th range cells at an
verage CNR of 30 dB.
Fig. 4(b) presents the estimated BCV values as the reference

indow swept across the entire range cells. Since the clutter
dges were sharp and abrupt in nature, we observed that the
CV values increased and decreased smoothly across the edges
f each clutter range. However, the BCV value did not drop
apidly at the clutter edges as initially expected (see Sections 5.1.1
nd 5.1.2, respectively), since when the clutter edges were in
he CUT, the entire lagging cells of the reference window were
ntirely occupied by clutter returns, thus producing a very high
CV value at that point in time. Consequently, we note that
he BCV value was maximum at the sharp clutter edges when
hese edges were in the CUT, i.e. at the clutter boundaries (the
0th, 50th, 80th, 110th, 150th, and 180th range cells). However,

when the reference window drifted beyond the clutter edges,
the BCV value slowly dropped towards zero since after each
edge, the radar returns were comprised only of homogeneous
noise elements (i.e. at the plateau of each clutter level). Fig. 4(b)
shows clearly that the BCV value increased further at each rising
edge according to the power level of each clutter level, which
accurately affirms that each succeeding clutter range was more

powerful than the preceding one.
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Following the dynamics of the estimated BCV value in the
lutter case of Fig. 4(b), our proposed method is shown in Fig. 4(c)
o have progressively estimated the number of targets as 7 at
ach clutter edge. The number of targets was halted at 7 in
rder to prevent an excessive false alarm rate from occurring at
he clutter edges, since it implies that the entire lagging cells
f the reference window (i.e N

2 − 1) were totally occupied by
clutter returns. Thus, the use of the effective BCV value by our
method presents any radar system or an operator with a de-
pendable metric to automatically determine the actual number
of targets and clutter edges within a reference window, as well
as to provide an idea of their respective signal strengths. This
implies that the BCV value is an effective deterministic metric for
measuring the degree of homogeneity/non-homogeneity of radar
returns within a reference window. Specifically, when the BCV
value is close to zero (i.e. below the threshold line of 0.5), then the
returns are homogeneous in nature (noise-only returns), whereas
when the BCV value is above the threshold line, then there ex-
ists non-homogeneous returns (presence of targets/clutter edges)
in the reference window. Following this mechanism, we have
demonstrated that our method adapts effectively to the different
operating conditions in which radar systems are expected to be
deployed.

The case of detecting multiple clutters in a single reference
window can be achieved by observing that the BCV trace of
Fig. 4(b) rises and falls in a consistent pattern at clutter edges.
Thus, the DA-OS algorithm can be modified to monitor the gra-
dients of these rise-fall patterns in order to detect the potential
presence of full clutter ranges in a reference window. However,
such a modification was not considered in the present article
since we used only a small and realistic window size of N = 16,
which may not be large enough to accommodate the full range of
a typical clutter.

5.2. Homogeneous environment

In this subsection, we discuss results pertaining to the selec-
tion of the threshold factor used in our method, as well as in the
CA, SOCA, GOCA and OS(12) schemes, towards maintaining Pfa =
10−3 based on a reference window size of N = 16. Then, using
these established threshold factors, we determined the minimum
SNR performance of our method compared with the CA, SOCA,
and GOCA schemes under the condition of homogeneous noise-
only radar returns containing a single target in the CUT without
interfering targets.
9

Fig. 6. Probability of Detection versus SNR (under homogeneous noise condition
containing a single target (No interfering targets) for N = 16, Pfa = 10−3).

5.2.1. Performance under noise-only radar returns
In order to obtain the threshold factors that would maintain

Pfa = 10−3, first, we examined our method under different ref-
rence window sizes under the condition of homogeneous noise-
nly radar returns. Monte Carlo simulation was again performed
o obtain the results presented in Fig. 5(a).

As expected, Fig. 5(a) shows that the Pfa rate decreases with
n increase in the threshold factor for the different reference
indow sizes considered in our experiments. This result agrees
ith theory as well as with classic results in the literature [16,18]
ince an increase in the threshold factor typically corresponds
o an increase in the actual estimated threshold value, which
nvariably reduces the Pfa rate of our scheme. We note that only
he Pfa rate is reported in this case since only noise radar returns
ere considered in this experiment. Furthermore, the Pfa rate also

decreased with an increase in N , which agrees with theory as well
as with known results in the literature [16,18]. The choice of a
reference window size of N = 16 is often used in the literature
as a fair balance between reducing computational complexities
(i.e. efficiency) as well as maintaining the accuracy of detection
(i.e. effectiveness). Consequently, we considered N = 16 in all
our experiments, and Fig. 5(a) shows that a threshold factor of
T = 3.67 was obtained in order to maintain P = 10−3.
DA_OS fa
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his threshold factor was thus maintained for our method in
ucceeding experiments reported hereafter.
The CA, SOCA, GOCA and OS(12) schemes were examined as

ell, and results obtained are presented in Fig. 5(b). In this case, a
eference window size of N = 16 was maintained. Fig. 5(b) shows
hat the following threshold factors were obtained to maintain
fa = 10−3 for each technique as follows: Tca = 3.06, Tsoca =
.696, Tgoca = 2.876, and TOS = 2.575, respectively. Except

stated otherwise, these values were maintained throughout other
experiments reported in this subsection.

5.2.2. Performance under single target in homogeneous noise-only
radar returns

Having established the required threshold factors for each
technique under the condition of homogeneous noise-only radar
returns, we then examined the SNR performance of our method
compared with the CA, SOCA, and GOCA schemes under the
condition of a single target in noise homogeneous conditions. The
results obtained are reported in Fig. 6. In Fig. 6, we show that our
proposed technique performs closely with the classic CA method
under conditions of homogeneous noise radar returns with a
single target. For the case of non-coherent detection, we note that
our method achieves ≈ 100% detection rate at an approximate
SNR level of 5 dB. Further, since the CA is considered to be the
optimum scheme under the homogeneous noise condition with a
single target, thus, we report in Table 3 the CFAR loss of each
method with reference to the CA scheme at Pd = 0.5. Here,
our proposed method presents a small CFAR loss of 0.392 dB at
Pd = 0.5. The GOCA and SOCA schemes provided a CFAR loss
of about 0.121 and 0.512 dB with respect to the CA technique,
respectively, which agrees closely with reported values in the
classic literature [16,18]. Essentially, with such a small CFAR loss
as a benchmark, it is argued that our proposed method provides
a considerably high detection performance rate for the case of
detecting single targets under the condition of homogeneous
noise-only radar returns within the reference window. In the next
subsection, we shall present results obtained for the case of a
more challenging condition comprising non-homogeneous radar
returns within the reference window.

5.3. Non-homogeneous environment

In this subsection, first, we discuss the performance of our
method against other techniques under different non-
10
Table 3
CFAR loss (in dB) of the different methods with respect to the CA at Pd = 50%,
Pfa = 10−3 , N = 16.

Method SNR (dB) Loss (dB)

CA 2.926 –
SOCA 3.438 0.512
GOCA 3.047 0.121
Proposed 3.318 0.392

homogeneous conditions comprised of multiple interfering tar-
gets within the reference window at different interference-to-
noise-ratio (INR) levels. In the subsequent subsection, we exam-
ine an encompassing as well as challenging dataset comprised
of all conditions including homogeneous noise-only conditions,
single target, multiple targets, and clutter edges, and clutter-
plus-interference conditions. The results obtained are discussed
as follows:

5.3.1. Detection performance under multiple interfering targets in
noise only radar returns

Fig. 7 presents the detection performance of the different
methods as a function of the number of interfering targets NI
within a reference window size of N = 16. In this case, we
considered the case when the INR of the interfering target is same
with the target return in the CUT (see Fig. 7(a)), as well as the case
of doubling the INR value in Fig. 7(b). Following several Monte
Carlo simulations, it was noted that the detection performance
of each method decreased as the number of interfering targets
increased within the lagging cells of the reference window. This
report is consistent with classic and theoretical results obtained
in the literature [16,18]. Particularly, the GOCA and CA schemes
were the least performers, whereas our method outperformed
both the OS(12) and SOCA schemes over the tested range. The
result of Fig. 7(a) indicates that it is often impossible for the
GOCA and CA schemes to detect the target signal in the CUT
when NI > 3. This observation is valid since both the CA and
GOCA schemes are prone to the effect of target masking in the
presence of interfering targets. On the other hand, the OS(12)
scheme maintains some detection capability until NI > 4. This
observation is again correct since the performance of the OS(12)
scheme can only be guaranteed so long as the kth element, in
this case the 12th element, is not exceeded. However, we show
that our proposed method effectively adapts the value of the
kth element in order to correctly track the actual number of
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Fig. 8. Simulated range cells containing radar returns from a complex environment and the corresponding BCV trace.
Table 4
Description of the radar returns in the range cells of Fig. 8(a).
Range cells Description

1–24, 31–44, 46–50, 106–144, 146–150 Noise-only radar returns
25, 27, 30, 45, 105, and 145 Targets at 10 dB, 20 dB, 15 dB, 10 dB, 10 dB, and 10 dB, respectively
51–100, 151–200 Noise plus clutter ranges at 10 dB and 30 dB, respectively
55, 60, and 65 Noise, clutter plus target returns at 20 dB, 30 dB and 25 dB, respectively
interfering targets present in the reference window. Thus, this
led to a generally better performance than the OS(12) scheme
and other schemes. It should be noted that the performance of
the SOCA scheme may have outperformed our DA-OS scheme at
NI > 5 simply because the interfering targets were situated in
nly one half of the reference window (i.e in the lagging cells). It
s well known that the performance of the SOCA scheme typically
egrades similarly to the CA scheme whenever the interfering
argets are situated concurrently in both the leading and lagging
ells of the reference window [18].
Further, we noticed only a little change in the performance

f our method, the OS(12), and the SOCA schemes, particularly
hen we doubled the INR value as in Fig. 7(b). The invariance
f our method to an increase in the INR values is explained
ased on the fact that our method is always able to accurately
etect and censor the interfering targets within the reference
indow. Consequently, despite increasing the INR values, our
ethod was able to accurately censor the interfering targets, thus
liminating their effect on the estimated threshold value. Hence,
y expunging the interfering targets from the reference window,
ur DA-OS scheme was able to maintain a high Pd performance
ate. On the other hand, it can be seen that the CA and GOCA
ethods were grossly affected by an increase in the INR value.
heir performance was grossly degraded because both methods
ere unable to expunge the interfering targets in the reference
indow prior to threshold computation. Thus, an increase in the

NR values of the interfering targets apparently led to an increase
n the threshold values estimated by the CA and GOCA methods,
hich consequently led to a poorer Pd performance.

.3.2. Detection performance under target, noise and clutter radar
eturns

Fig. 8(a) presents the radar returns of a highly complex non-
omogeneous environment comprising multiple targets of vary-
ng INR levels, rising and falling clutter edges, as well as multiple
argets plus clutter returns. The radar returns and the correspond-
ng threshold values estimated per technique were averaged over
000 Monte Carlo simulations in order to improve the statistical
ignificance of the obtained results. The contents of the range
ells of Fig. 8(a) are described in Table 4.
In the ensuing discussion, the SNR level refers to any tar-

et return situated in the CUT at any point in time, whereas
ny other target in the reference window is considered to be
n interfering target and thus denoted by the INR level. The
11
clutter-to-noise-ratio (CNR) describes the power level at the clut-
ter ranges, whereas interference and clutter power levels are
denoted as CNR+INR. All methods compared herewith were con-
figured to maintain Pfa = 10−3 for N = 16. Fig. 8(b) provides
the BCV trace over the entire range cells. Here, it seen that the
BCV value responds effectively to the regions of homogeneity and
non-homogeneity. Particularly, high BCV values were computed
as expected whenever interfering targets were present in the
reference window. The high BCV value about the 150th range cell
clearly corresponds to the high clutter edge in the range cells.
Similar to earlier observations in Section 5.1, the BCV value was
effective at determining the actual number of interfering targets
in the reference window in order to estimate accurate threshold
values.

1. Multiple closely spaced targets: Fig. 9 presents an ex-
panded view of Fig. 8(a) showing the estimated threshold
values for the different methods between the 1st − 35th
range cell. Three multiple closely spaced targets are located
at the 25th, 27th, and 30th range cells. These targets are
seen to be accurately detected by our proposed method as
well as by the OS(12) and SOCA schemes. Whereas, the CA
scheme failed to detect the target at the 25th range cell,
while the GOCA scheme missed the targets at the 25th and
30th range cells owing to the effect of target masking. The
superiority of our method can be seen in Fig. 9 following
the stable threshold values estimated by our method even
in the presence of the interfering targets of different INR
values.

2. Multiple targets plus clutter: Fig. 10 shows that the target
return at the 45th range cell was clearly detected by our
method as well as by the SOCA scheme. The OS(12) scheme
barely detected this target, whereas the CA and GOCA
schemes missed the target.
A high false alarm rate was clearly avoided by all other
methods except the SOCA scheme at the first clutter edge
located at the 51st range cell. The tendency of the SOCA
scheme to incur an increased false alarm rate at clutter
edges is well established in the theoretical literature [18]. It
occurs because the lowest value from either of the leading
or lagging cells is often considered to be the noise estimate
by the SOCA scheme, thus leading to a lower threshold
value that further increases the false alarm rate at clutter
edges. However, neither of the tested methods in our ex-
periments were able to detect the three targets embedded
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Fig. 9. Zoomed version of Fig. 8(a) showing the estimated threshold values
between 1− 35th element.

Fig. 10. Zoomed version of Fig. 8(a) showing the estimated threshold values
etween 41− 110th element.

Fig. 11. Zoomed version of Fig. 8(a) showing the estimated threshold values
etween 130− 172th element.

in the clutter returns at the 55th, 60th and 65th range
cells. This occurred because the threshold factors used to
maintain Pfa = 10−3 were established based on the homo-
geneous noise components between the 1st − 24th range
cells. Thus, since these threshold factors were maintained
throughout the entire simulation and they were not read-
justed automatically at the new clutter level, consequently,
this led to the estimation of higher threshold values, which
led to the missed targets.

3. Target closely located to clutter edge:
Finally, Fig. 11 shows that only our proposed method, the
SOCA, and the OS(12) scheme were able to detect the target
at the 145th range cell, which is closely located to the
clutter edge at range cell 150. Although the CA and GOCA
schemes failed to detect the target at the 145th range cell,
nevertheless they maintained a low false alarm rate at the
clutter edge, which is an expected result. Following these
results, we have demonstrated that our method provides
an improved performance as against the fixed OS scheme,
the CA, GOCA, and SOCA schemes.

. Comparison against other censoring approaches

In this section, we compare the DA-OS scheme in a quantita-
ive sense against a notable censoring OS-CFAR scheme and then
e discuss other qualities of the DA-OS scheme in comparison to
ther methods in the literature.
12
6.1. Quantitative comparison of the DA-OS scheme with the ACCA-
ODV-CFAR technique

The automatic censored cell averaging (ACCA)-based ordered
data variability CFAR (termed ACCA-ODV-CFAR) [26] is a pop-
ular improved version of the variability index CFAR (VI-CFAR)
technique [14]. The application of a censoring mechanism using
the variability index (VI) makes the ACCA-ODV-CFAR method
useable when the number of interfering targets and clutter cells
are unknown. In this section, we compare our DA-OS scheme
against the ACCA-ODV-CFAR method. It is essential to note that
the ACCA-ODV-CFAR method requires a careful fine-tuning of
two highly dynamic parameters, namely, the P and the threshold
parameter S. The threshold parameter S is used to decide whether
the VI value stems from a homogeneous or non-homogeneous
environment. Authors in [26] noted that a value of P = 12 should
e used for a window size of N = 16, whereas the S parameter
hould be obtained via a lookup table in order to obtain its best
alue per iteration. Thus, in our simulation, we used P = 12 and

then varied S in order to improve the performance of the ACCA-
ODV-CFAR method. It is noted that such a fine-tuning process is
not required in our DA-OS scheme, thus making it easier for use
under real-life conditions.

Prior to comparing both techniques, first, we obtained the
required threshold factor T used to maintain PFA = 10−2 for
oth techniques. This experiment was conducted under homoge-
eous noise-only conditions and results obtained are presented in
ig. 12(a). It can be seen from Fig. 12(a) that a similar threshold
actor of T = 1.4 yielded PFA = 10−2 for both techniques. This
alue was used to compare both techniques under the case of
nterfering target conditions.

Fig. 12(b) presents the Pd performance under varying number
f interfering targets in the lagging cells of the reference window.
he target return in the CUT was maintained at SNR = 5 dB,
hereas the interference-to-noise-ratio (INR) was changed from
dB to 10 dB. It is seen from Fig. 12(b) that the DA-OS scheme
chieved a better Pd performance against the different settings of
he ACCA-ODV-CFAR method. A few points are noteworthy:

1. The Pd performance of the ACCA-ODV-CFAR method in-
creases as the S parameter is reduced. This is because more
elements are classified as non-homogeneous elements as S
is reduced, thus enabling the ACCA-ODV-CFAR method to
detect and censor more interfering signals.

2. The Pd performance of the ACCA-ODV-CFAR method in-
creases as INR increases. This is an expected performance
since it becomes easier to detect the interfering targets
as the INR is increased, which improves censoring of such
interfering targets for improved Pd performance. However,
there exists no further improvement in the Pd performance
as S goes below 0.1 since the threshold may lie at the noise
level at this point.

3. The Pd performance of the ACCA-ODV-CFAR method is
grossly reduced when the number of interfering targets K
in the reference window exceeds N−P . Thus, since P = 12
and N = 16, the actual target becomes undetectable when
K ≥ 4 as can be seen in Fig. 12(b). Such very low detection
rates can be explained since the undetected interfering
targets beyond K = 4 caused a significant bias, which led to
an increase in the estimated threshold value, thus reducing
the detection rate of the ACCA-ODV-CFAR method.

4. Our DA-OS scheme is invariant to an increase in the INR
value. This is true since the DA-OS scheme is able to detect
better the interfering targets as the INR increases, thus
maintaining a high P performance.
d
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Fig. 12. (a) Choice of threshold factor to maintain a desired probability of false alarm, (b) Probability of detection under increasing number of interfering targets in
the lagging cells with different INR values using N = 16 and maintaining Pfa = 10−2 .
5. The Pd performance of our DA-OS scheme only gradually
tapers off as the number of interfering targets surpasses the
lagging cells of the reference window. This demonstrates
that our scheme is able to detect and censor interfering
targets effectively in the reference window.

.2. Qualitative remarks relative to other approaches

We acknowledge that there are some few notable methods
n the literature deployed to estimate the kth element of the
S scheme and other censoring-based schemes. However, it is
ften difficult to compare fairly these approaches in a quantitative
ense, particularly because of the absence of standardized and
utomated methods to accurately optimize the different param-
ters of these different approaches. Conducting fair comparative
nalysis in the absence of automated methods is further difficult
wing to the dynamic nature of such parameters, for example, the
hreshold factor of some methods used to maintain a constant
robability of false censoring must be continuously tuned per
ell and per environment [13]. Thus, ensuring that such dynamic
arameters are fairly optimized and fine-tuned automatically
nder different conditions is often a subjective and tedious trial
nd error process. Consequently, the need to develop standard,
utomated, and global parameter-tuning procedures is a concern
or future works. Nevertheless, in this subsection, we make an
ffort to discuss some key qualitative characteristics of the DA-OS
cheme relative to other known schemes (see Table 5 for a brief
ummary) as follows:

.2.1. kth ordered element
Methods that can estimate the number of interfering targets

nd the kth element dynamically are most desired in any OS
cheme. This is because such methods adapt dynamically in order
o accurately censor the presence of such interfering targets as
ell as clutter edges in the reference window. This will improve
he performance of the OS scheme. In this regard, our proposed
A-OS scheme as well as a few other notable schemes such as
he AC-CFAR schemes [13,23] are able to provide such a dynamic
uality.

.2.2. Deterministic metric for homogeneity test
In order to reliably determine the presence of interfering tar-

ets and clutter edges in a reference window, it is often necessary
13
to perform an accurate test for the degree of homogeneity/non-
homogeneity of elements within the reference window. In this
regard, it is much desired to obtain a metric whose value relates
in a deterministic manner to the degree of homogeneity/non-
homogeneity of elements in the reference window. Our DA-OS
scheme presents such a well-behaved metric (i.e the BCV), which
is used to accurately determine the kth element of the OS scheme.
Prior methods such as the VI- [14], IVI- [15], and ODV-CFAR [26]
schemes depend on the variability index (VI) metric in order
to determine the homogeneity/non-homogeneity of elements in
the reference window. However, the main limitation of the VI
metric is that it depends on a threshold value whose estimate
fluctuates according to the changing radar environment. This
is an undesirable characteristics since there exist no practical
approach to accurately determine the appropriate threshold value
per environment. In our case, the BCV value is a more stable and
better-behaved metric, which depends on a fixed threshold value
irrespective of the operating environment.

6.2.3. Time complexity
Short computational time is most desired in any CFAR scheme.

However, to the best of our knowledge, most censoring and
dynamic OS schemes require a cell-by-cell processing approach in
order to search accurately for the kth element of the OS scheme.
Consequently, most methods will reduce to a TC of O(N2) since
a minimum of two for loops will be required to process each
cell as the CUT sweeps through the reference window. Our DA-
OS scheme presents a similar TC, thus, it provides no significant
timing advantage over other known methods.

6.2.4. Parameter tuning process
Methods with multiple parameters must be accurately fine-

tuned in order to provide an improved performance. Further,
such multiple parameters may require re-calibration under online
operating conditions, which presents a challenge at the moment
since such self-calibrating methods do not exist. Consequently,
at present, methods that depend on too many parameters to be
optimized are not widely desired. The DA-OS scheme does not
depend on any additional dynamic parameter(s) apart from the
well-known standard inputs to any CFAR scheme, which includes
the reference window size and the threshold factor required to
maintain a constant Pfa rate. This makes the DA-OS scheme a
highly desirable scheme.
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ualitative comparison of methods deployed to estimate the kth rank ordered element of the OS scheme.
Method Year kth ordered

element
Deterministic
metric for
homogeneity
test

Time
complexity

Requires
parameter
tuning
process

Uses Pfc
lookup table

Number of
schemes

AC-CFAR [23] 1992 Dynamic No O(N2) Yes Yes Single
GOSGOSO [19] 1995 Fixed No O(N2) Yes Yes Multiple
VI-CFAR [14] 2000 NA Yes O(N2) Yes Yes Multiple
IVI-CFAR [15] 2004 Fixed Yes O(N2) Yes Yes Multiple
ACCA-ODV [26] 2005 Fixed Yes O(N2) Yes Yes Single
ADCCA-CFAR [12] 2008 Fixed Yes O(N2) Yes Yes Single
AC-CFAR [13] 2014 Dynamic No O(N2) Yes Yes Multiple
Proposed DA-OS 2020 Dynamic Yes O(N2) No No Single
6.2.5. Use of Pfc lookup table
In the absence of tractable mathematical methods to main-

ain a constant probability of false censoring (Pfc), most known
ethods must depend on a lookup table in order to select an
ppropriate censoring threshold value per changing environment
see Table 5). In addition to being a cumbersome and often in-
ccurate approach, the use of lookup tables introduces additional
emory requirements for radar systems, which is an undesirable
haracteristic. Our DA-OS scheme presents an advantage since it
oes not depend on any lookup table for its censoring process.

.2.6. Number of schemes
Some censoring methods are designed to switch between

ultiple CFAR schemes based on the outcome of some test
esult(s) [13–15]. However, such a switching architecture in-
roduces additional design complexities including the need to
onstruct multiple schemes within a radar sensor. Such a char-
cteristic is often undesirable since certain applications may be
imited in both computing resources and physical space. Conse-
uently, single CFAR schemes such as our DA-OS scheme are most
esired in radar systems.
Essentially, we have argued based on the foregoing that our

A-OS scheme presents a number of desirable characteristics as
gainst other schemes. Thus, the DA-OS scheme will be beneficial
o many applications that depend on effective CFAR schemes
or improved performance. In particular, it could possibly be
pplied to vector adaptive detection applications, where square
aw operations are not performed in the detection chain, instead,
he multidimensional space can be explored to improve radar
etection [36,37].

. Conclusion

We have proposed a method that determines automatically
nd effectively the kth rank ordered element of the ordered
tatistics (OS) CFAR scheme based on the principle of discriminant
nalysis. Our method computes the between-class variance (BCV)
alue of each cell in the reference window towards determining
he degree of homogeneity and non-homogeneity of radar re-
urns within the reference window. It then uses the BCV value
o estimate the number of interfering targets in the reference
indow, thus determining the kth rank ordered element of the

scheme. We have shown that our approach is effective under a
number of different environments, including under homogeneous
and non-homogeneous conditions. Thus, following the results
obtained, our method maintains a high detection rate amidst
multiple interfering targets, it exhibits a very low CFAR loss in
homogeneous conditions, and reduces the false alarm rate at
clutter edges compared to existing methods. A main limitation
of the proposed method is its increased computational com-
plexity as against some classic methods such as the CA, GOCA,
SOCA, and fixed OS schemes. Nevertheless, the DA-OS scheme
14
will be of great benefit to a number of remote sensing applica-
tions, particularly where increased radar performance is required
alongside other desired characteristics as summarized in Table 5.
A few areas recommended for future works include reducing the
computational complexity of the proposed algorithm for faster
realtime operation, detecting the case of multiple clutters in a
reference window, and extending the present one dimensional
data structure of the BCV value to the case of a two dimensional
structure, which will greatly benefit image processing applica-
tions, such as in satellite and geographical-based remote sensing
applications.
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