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Abstract⎯Ozone is a green house gas. Ozone 

absorption cross sections have been reported with 
discrepancies and inconsistencies. In this paper, 
simultaneous effects of the optical path length and 
temperature variations on ozone gas absorption cross 
sections are investigated at different wavelengths. 
HITRAN 2012, the latest available line list on 
spectralcalc.com simulator, is used in this study to 
simulate ozone gas absorption cross sections in relation 
to the simultaneous effects of the optical path length and 
temperature at the wavelengths of 603 nm and 575 nm. 
Results obtained for gas cells with the optical path 
length from 10 cm to 120 cm show that the decrease in 
temperatures from 313 K to 103 K results in the increase 
in ozone gas absorption cross sections. At wavelengths of 
603 nm and 575 nm, the percentage increase of ozone gas 
absorption cross sections is 1.22% and 0.71%, 
respectively. Results obtained in this study show that in 
the visible spectrum, at constant pressure, ozone gas 
absorption cross sections are dependent on the 
temperature and wavelength but do not depend on the 
optical path length. Analysis in this work addresses 
discrepancies in ozone gas absorption cross sections in 
relation to the temperature in the visible spectrum; thus, 
the results can be applied to get optimal configuration of 
high accuracy ozone gas sensors. 

  
Index Terms⎯Absorption cross sections, length, 

ozone, pressure, transmittance, visible spectrum. 
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1. Introduction 
Green communications are the technology directed 

towards the sustainability of environment and economy[1]. 
Ozone is a primary green house gas. Green house gases are 
associated with the risk of causing climate changes which 
results in earth warming[2]. Thus, accurate and adequate 
monitoring of green house gases like ozone is necessary. 
The ozone gas absorption cross sections are crucial for the 
accurate measurement of ozone gas concentration[3]. 
However, inconsistencies and discrepancies have been 
associated with ozone gas absorption cross sections in [4] 
to [6]. Above 10% discrepancies in absorption cross 
sections of ozone gas have been reported in [7] and [8]. The 
dependence of ozone gas absorption cross sections on the 
temperature was recently investigated by Serdyuchenko et 
al.[4]. The authors observed that it is obvious that ozone 
absorption data is not consistent. Their work was in the 
wavelength range from 213 nm to 1100 nm and the 
temperature range from 193 K to 293 K. Results obtained 
by the authors in the visible spectrum, the wavelength range 
of 450 nm to 700 nm showed that the decrease in the 
temperature between 293 K and 193 K results in a small 
increment (about 1%) in the ozone gas absorption cross 
sections around 600 nm wavelength[4]. This result, however, 
contradicts the result of El Helou et al., who showed 3% 
and 6.7% decreases in ozone gas absorption cross sections 
with the decrease in the temperature between 223 K and 
144 K[6] in the wavelength range of 540.54 nm to 645.16 nm. 
In view of these discrepancies, further work on the 
temperature effect on ozone gas absorption cross sections is 
inevitable. Furthermore, different lengths of gas cells have 
been used in the measurement of ozone gas concentration 
in the visible spectrum: 10 cm, 25 cm, 50 cm[5], 70 cm[9], 
and 120 cm[10]. Differences in the length of gas cells will 
result in differences in the total volume of gas cells. 
According to Charle’s Law, at constant pressure, the 
volume of a fixed mass of gas is proportional to its absolute 
temperature[11],[12]; thus, the optical path length variation is 
examined in the way it affects ozone absorption cross 
sections in the visible spectrum at different temperatures. In 
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the literatures, accuracy[5], resolution, and sensitivity[13]-[20] 
have been shown to be dependent on the optical path length. 
The novelty in this work is to establish the relation between 
the optical path length and temperature with ozone gas 
absorption cross sections at different wavelengths. While 
the absorption spectroscopy is the focus of this manuscript, 
other spectroscopic techniques for gas detection such as 
intra-cavity spectroscopy were emphasized in [21]. 

This paper is organized into five sections. Section 1 is 
an introduction. This provides background information on 
which the study is built. Section 2 is a fundamental review 
to ozone gas absorption cross sections in the visible 
spectrum. Section 3 focuses on the methodology adopted in 
this study. In Section 4, results obtained are discussed and 
analysed. Finally, in Section 5, conclusions are drawn 
based on the findings in Section 4. 

2. Review of Ozone Gas 
Absorption Cross Sections   

in Visible Spectrum 
The relevance of ozone gas absorption cross sections is 

demonstrated by several research activities devoted towards 
obtaining the right value of ozone gas absorption cross 
sections in the visible spectrum[8],[13],[22]-[24]. Griggs[22] in 
1968 found out that the value of ozone gas absorption cross 
sections he obtained for the visible spectrum were in 
excellent an agreement with Vigroux (5.18×10–25 
m2/molecule)[13],[23]. Thus, Griggs recommended the 
previous results obtained by Vigroux[23] for use in the 
Chappuis band[22]. Ozone gas has peak absorption in the 
visible spectrum; in 1988, Brion et al.[7] in their article 
reported that Amoruso et al.[25], Vigroux[23], and Inn and 
Tanaka[8] were in an agreement on the peak absorption of 
ozone gas in the visible spectrum at the wavelengths of 603 

nm and 575 nm. Thus, simulation results in this work are 
compared with the peak absorption cross section at 603 nm 
and ozone gas absorption at 576.96 nm[7],[13]. This article 
investigates the relationship between the temperature and 
ozone gas absorption cross sections in the visible spectrum, 
thus, previous work on the temperature effect is also 
reviewed. Serdyuchenko et al.[4], El Helou et al.[6], Burrows 
et al.[26], and Burkholder and Talukdar[27] investigated the 
dependence of ozone gas absorption cross sections on the 
temperature in the Chappuis band. The work by 
Serdyuchenko et al.[4] and El Helou et al.[6] has been 
discussed in Section 1. Burrows et al. reported that ozone 
gas absorption cross sections decreased with decreasing 
temperatures at the wavelength range of 370 nm to 500 

nm[26]. However, the authors observed an increase in ozone 
gas absorption cross sections as the temperature decreased 
at wavelengths of above 650 nm[26]. Burkholder and 
Talukdar in their work recorded a variation of less than 1% 
in ozone gas absorption cross sections between 550 nm and 

650 nm wavelengths[27]. Measurements of ozone and other 
trace gases were dependent on the accurate value of 
absorption cross sections in [28]. 

3. Simulation Software and 
Methodology 

The methodology adopted is online simulation via 
www.spectralcalc.com. The simulation is for high 
resolution spectral modelling. HITRAN 2012—the latest 
available line list on the spectralcalc.com simulator is used 
in this study to simulate ozone gas absorption cross sections 
in relation to the effects of varying the temperature and 
optical path length at the wavelengths of 603 nm and 575 

nm. The ranges of the temperature and optical path length 
considered are between 103 K and 313 K and between 10 

cm and 120 cm, respectively. 

 
Fig. 1. Summary of spectralcalc.com simulation methodology. 

The fixed parameters as shown in Fig. 1 include the 
wavelength ranges from 602.02 nm to 603.02 nm and 
574.5 nm to 575.5 nm, concentration at 950 ppm, and one 
atmosphere pressure. Ozone gas is selected as the gas of 
choice. All isotopologues of ozone gas are considered. The 
output from the simulator is transmittance at 603 nm 
(actual value is 603.0105702572658 nm) and that at 575 

nm (actual value is 575.01623235460300nm). The 
methodology is summarized in Fig. 1. The ozone gas 
absorption cross section σ and deviation Δσ are computed 
using (1) and (2) earlier[29],[30]. 
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where cppm is the ozone concentration in ppm. R is the ideal 
gas constant in atm·m3·mol–1·K–1. Tp is the temperature in 
K. σ  is the absorption cross section in m2/molecule. NA is 
Avogadro’s constant in molecule/mol. P is the pressure in 
atmosphere atm. L is the optical path length. And T is the 
transmittance. 
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where σ is the ozone absorption cross section at 603 nm. σw 
is the ozone absorption cross section obtained in this work. 
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4. Results and Discussion 
Fig. 2 and Fig. 3 show the effects of the temperature 

and optical path length variations on transmittance for one 
atmosphere pressure at the wavelengths of 603 nm and 575 

nm. The decrease in temperatures from 313 K to 103 K 
results in a decrease in the transmittance for each gas cell 
considered. At 603 nm, the decrease is 0.24% and 2.87% 
for the optical path length of 10 cm and 120 cm, 
respectively. Similarly, at 575 nm, the decrease is 0.22% for 
10 cm and 2.63% for 120 cm, respectively. The longer the 
gas cell, the higher the decrease in the transmittance is with 
decreasing temperatures. Also, at a specific temperature, the 
light transmittance generally decreases with the increase in 
the optical path length. At 603 nm with the optical path 
length increased from 10 cm to 120 cm, the decrease in 
transmittance is 3.78% for the temperature of 103 K and 
1.24% for 313 K, respectively. Similarly, at 575 nm with the 
optical path length increased from 10 cm to 120 cm, the 
decrease in transmittance is 3.47% for 103 K and 1.15% for 
313 K, respectively. 
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Fig. 2. Effects of the optical path length and temperature 
variations on transmittance at 603 nm. 

100 150 200 250 300
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Temperature (K)

Tr
an

sm
itt

an
ce

 

10 cm
20 cm
30 cm
40 cm
50 cm
60 cm
70 cm
80 cm
90 cm
100 cm
110 cm
120 cm

 
Fig. 3. Effects of the optical path length and temperature 
variations on transmittance at 575 nm. 

Fig. 4 shows the temperature and optical path length 
effects on ozone gas absorption cross sections at the 

wavelengths of 603 nm and 575 nm. Increasing the optical 
path length from 10 cm to 120 cm has the same effect on 
ozone gas absorption cross sections. Hence, the effect of 
the optical path length for each gas cell is overlapping for 
wavelengths 603 nm and 575 nm, respectively. There are 
three different responses observed as the temperature is 
decreased from 313 K to 103 K. Between 313 K and 293 K, 
the absorption cross sections are a constant value of 
5.1058×10–25

 m2/molecule at 603 nm and 4.7158×10–25 
m2/molecule at 575 nm, respectively. For the temperature 
range of 293 K to 203 K the absorption cross sections are 
increased from 5.1058×10–25

 m2/molecule to 5.1569×10–25
 

m2/molecule at 603 nm and from 4.7158×10–25
 m2/molecule 

to 4.7468×10–25
 m2/molecule at 575 nm, respectively. For 

the temperature range of 203 K to 103 K, the absorption 
cross sections are increased from 5.1569×10–25

 m2/molecule 
to 5.1691×10–25

 m2/molecule at 603 nm and from 
4.7468×10–25

 m2/molecule to 4.7495×10–25
 m2/molecule at 

575 nm, respectively. For the temperature range of 193 K to 
103 K, the absorption cross sections are a constant value of 
5.1691×10–25

 m2/molecule at 603 nm and 4.7495×10–25 
m2/molecule at 575 nm, respectively. 

The decrease in temperatures from 313 K to 103 K 
shows an increase in ozone gas absorption cross sections. 
At the wavelength of 603 nm, the increased percentage is 
1.22%. At 575 nm, the increased percentage is 0.71%. A 
difference of 0.51% shows that the variation of absorption 
cross sections is wavelength dependent. 
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Fig. 4. Effects of the temperature and optical path length on ozone 
absorption cross sections. 

In comparison with previous work, the results are in a 
good agreement with Serdyuchenko et al.[4], who obtained a 
similar increment of 1%. The increase in the ozone gas 
absorption cross sections is due to the temperature variation. 
The electronic ground state, vibrational and rotational 
distribution states change with temperatures[31]. 
Nonlinearity behaviour is more pronounced at 575 nm, 
which is observed at temperatures 263 K, 233 K, and 203 K. 
The peak absorption wavelength of 575 nm in comparison 
with 603 nm has lower absorption of ozone gas 
(approximately 8% lower). 
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The results obtained are further compared with the 
work of Brion et al. (5.23×10–25

 m2/molecule)[7] and 
Vigroux et al. (5.18×10–25

 m2/molecule)[13],[23] at 603 nm 
and with Brion et al. (4.766×10–25

 m2/molecule)[7] and 
Hearn (4.76×10–25

 m2/molecule)[32] at 575 nm. Fig. 5 and 
Fig. 6 show the deviation with the increase in temperatures 
from 103 K to 313 K. 
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Fig. 5. Deviation of the absorption cross sections from 5.18×10–25 
m2/molecule and 5.23×10–25 m2/ molecule at 603 nm. 
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Fig. 6. Deviation from the absorption cross sections of 4.76×10–25 
m2/molecule and 4.766×10–25 m2/ molecule at 575 nm. 

In Fig. 5 the range of deviation at 603 nm is from 
0.21% to 1.45% in comparison with that of Vigroux et al. 
and 1.18% to 2.43% in comparison with that of Brion et al. 
Similarly, in Fig. 6, the range of deviation is from 0.22% to 
0.94% and 0.35% to 1.06% when compared with those of 
Hearn and Brion et al., respectively. 

In relation to green communications, the results in this 
study can be applied to enhance the accurate measurement 
of ozone gas, which will in turn, facilitate adequate 
monitoring of ozone gas impacts on the environment. 

5. Conclusions 
The temperature and optical path length effects on the 

ozone gas absorption cross sections were investigated in the 

visible spectrum at the wavelengths of 603 nm and 575 nm. 
The decrease in temperatures from 313 K to 103 K showed 
a decrease in transmittance for each gas cell considered. 
The longer the gas cell, the higher the decrease in 
transmittance was along with the decrease in temperatures. 
There was an increase in the absorption cross sections 
along with the decrease in temperatures. The decrease in 
the absorption cross sections was 1.22% at 603 nm and  
0.71% at 575 nm, respectively, which shows the 
dependence on wavelengths. The increase in absorption 
was the same for all optical path lengths (10 cm to 120 cm) 
considered. Thus, the results obtained in this work show 
that at constant pressure, the ozone gas absorption cross 
sections are dependent on the temperature and wavelength, 
but are independent on the optical path length. The study 
addresses discrepancies that arise in the ozone gas 
measurement in relation to the temperature effect on the 
ozone gas absorption cross sections. These results will 
enhance the accurate measurement and monitoring of ozone 
gas as a green house gas. It is recommended that the results 
obtained need to be further verified through experiments. 

References 
[1] N. Nomikos, A. Nieto, P. Makris, et al., “Relay selection for 

secure 5G green communications,” Telecommunication 
Systems, vol. 59, no. 1, pp. 169-187, May 2015. 

[2] W. Yu, L. Musavian, and Q. Ni, “Tradeoff analysis and joint 
optimization of link-layer energy efficiency and effective 
capacity toward green communications,” IEEE Trans. on 
Wireless Communications, vol. 15, no. 5, pp. 3339-3353, 
2016. 

[3] J. Viallon, S. Lee, P. Moussay, K. Tworek, M. Petersen, and 
R. Wielgosz, “Accurate measurements of ozone absorption 
cross-sections in the hartley band,” Atmospheric 
Measurement Techniques, vol. 8, no. 3, pp. 1245-1257, Mar. 
2015. 

[4] A. Serdyuchenko, V. Gorshelev, M. Weber, W. Chehade, and 
J. Burrows, “High spectral resolution ozone absorption 
cross-sections–part 2: Temperature dependence,” 
Atmospheric Measurement Techniques, vol. 7, no. 2, pp. 
625-636, Feb. 2014. 

[5] K. Teranishi, Y. Shimada, N. Shimomura, and H. Itoh, 
“Investigation of ozone concentration measurement by 
visible photo absorption method,” Ozone: Science and 
Engineering, vol. 35, no. 35, pp. 229-239, May 2013. 

[6] Z. El Helou, S. Churassy, G. Wannous, R. Bacis, and E. 
Boursey, “Absolute cross sections of ozone at atmospheric 
temperatures for the wulf and the chappuis bands,” Journal 
of Chemical Physics, vol. 122, pp. 244311:1-9, Jun. 2005. 

[7] J. Brion, A. Chakir, J. Charbonnier, D. Daumont, C. Parisse, 
and J. Malicet, “Absorption spectra measurements for the 
ozone molecule in the 350-830 nm region,” Journal of 
Atmospheric Chemistry, vol. 30, no. 2, pp. 291-299, 1998. 

[8] E. C. Inn and Y. Tanaka, “Absorption coefficient of ozone in 
the ultraviolet and visible regions,” Journal of the Optical 
Society of America, vol. 43, no. 10, pp. 870-872, 1953. 

[9] S. Jodpimai, S. Boonduang, and P. Limsuwan, “Inline ozone 



DAVID et al.: Optical Path Length, Temperature, and Wavelength Effects Simulation on Ozone Gas Absorption Cross Sections towards Green Communications 

 

203

concentration measurement by a visible absorption method 
at wavelength 605 nm,” Sensors and Actuators B: Chemical, 
vol. 222, pp. 8-14, Jan. 2016. 

[10] S. Voigt, J. Orphal, K. Bogumil, and J. Burrows, “The 
temperature dependence (203-293 K) of the absorption cross 
sections of O3 in the 230-850 nm region measured by 
fourier-transform spectroscopy,” Journal of Photochemistry 
and Photobiology A: Chemistry, vol. 143, no. 1, pp. 1-9, Oct. 
2001. 

[11] R. Chang and J. Overby, General Chemistry: The Essential 
Concepts, 6th ed. New York: Mcgraw-Hill, 2011, ch. 5, pp. 
145. 

[12] H. P. Bloch, A Practical Guide To Compressor Technology, 
2nd ed. New York: Wiley-Interscience, 2006, ch. 1, pp. 9. 

[13] S. O’keeffe, C. Fitzpatrick, and E. Lewis, “An optical fibre 
based ultra violet and visible absorption spectroscopy 
system for ozone concentration monitoring,” Sensors and 
Actuators B: Chemical, vol. 125, no. 2, pp. 372-378, Aug. 
2007. 

[14] S. W. Otto, Fibre Optic Chemical Sensors and Biosensors 
Volume I, London: CRC Press, 1991, pp. 2 & 26. 

[15] M. Fowles and R. Wayne, “Ozone monitor using an LED 
source,” Journal of Physics E: Scientific Instruments, vol. 
14, no. 14, pp. 1143-1145, Oct. 1981. 

[16] Y. Zhao, L. Bai, Y.-N. Zhang, W. Hou, and Q. Wang, 
“Review on structures and principles of gas cells in the 
absorption spectrum-based optical fiber gas sensor systems,” 
Instrumentation Science and Technology, vol. 40, no. 5, pp. 
385-401, Sep. 2012. 

[17] A. Gomez and E. Rosen, “Fast response cavity enhanced 
ozone monitor,” Atmospheric Measurement Techniques, vol. 
6, no. 5, pp. 487-494, Feb. 2013. 

[18] M. Degner, N. Damaschke, H. Ewald, and E. Lewis, “High 
resolution LED-spectroscopy for sensor application in harsh 
environment,” in Proc. of 2010 IEEE Intl. Instrumentation 
and Measurement Technology Conf., 2010, pp. 1382-1386. 

[19] M. Degner, N. Damaschke, H. Ewald, S. O'keeffe, and E. 
Lewis, “UV LED-based fiber coupled optical sensor for 
detection of ozone in the ppm and ppb range,” in Proc. of 
2009 IEEE Conf. on Sensors, 2009, pp. 95-99. 

[20] L. D. Maria and D. Bartalesi, “A fiber-optic multisensor 
system for predischarges detection on electrical equipment,” 
IEEE Sensors Journal, vol. 12, no. 1, pp. 207-212, Jan. 
2012. 

[21] K. Liu, W.-C. Jing, G.-D. Peng, et al., “Intra-cavity 
absorption gas sensors using wavelength modulation and 
wavelength sweep,” Journal of Electronic Science and 
Technology of China, vol. 6, no. 4, pp. 353-356, Dec. 2008. 

[22] M. Griggs, “Absorption coefficients of ozone in the 
ultraviolet and visible regions,” The Journal of Chemical 
Physics, vol. 49, no. 2, pp. 857-859, Jul. 1968. 

[23] E. Vigroux, Contribution À L'étude Expérimentale De 
L'absorption De L'ozone, Par Ernest Vigroux, Masson, 
1953. 

[24] J. Brion, A. Chakir, D. Daumont, J. Malicet, and C. Parisse, 
“High-resolution laboratory absorption cross section of O3. 
temperature effect,” Chemical Physics Letters, vol. 213, no. 
5-6, pp. 610-612, Oct. 1993. 

[25] A. Amoruso, M. Cacciani, A. Di Sarra, and G. Fiocco, 

“Absorption cross sections of ozone in the 590 to 610 nm 
region at T=230 K and T=299 K,” Journal of Geophysical 
Research: Atmospheres 95(D12), vol. 95, no. D12, pp. 
20565-20568, Nov. 1990. 

[26] J. Burrows, A. Richter, A. Dehn, et al., “Atmospheric 
remote-sensing reference data from gome—2. 
temperature-dependent absorption cross sections of O3 in the 
231-794 nm range,” Journal of Quantitative Spectroscopy 
and Radiative Transfer, vol. 61, no. 4, pp. 509-517, Mar. 
1999. 

[27] J. B. Burkholder and R. K. Talukdar, “Temperature 
dependence of the ozone absorption spectrum over the 
wavelength range 410 nm to 760 nm,” Geophysical 
Research Letters, vol. 21, no. 7, pp. 581-584, Apr. 1994. 

[28] K. Bogumil, J. Orphal, T. Homann, et al., “Measurements of 
molecular absorption spectra with the sciamachy pre-flight 
model: Instrument characterization and reference data for 
atmospheric remote-sensing in the 230–2380 nm region,” 
Journal of Photochemistry and Photobiology A: Chemistry, 
vol. 157, no. 2-3, pp. 167-184, May 2003. 

[29] M. David, M. H. Ibrahim, and S. M. Idrus, “Sampling 
frequency effect on the absorption cross section of ozone in 
the visible spectrum,” Journal of Optoelectronics and 
Advanced Materials, vol. 17, no. 3-4, pp. 403-408, 2015. 

[30] T. C. E. Marcus, M. David, M. Yaacob, et al., “Pressure 
dependence of ozone absorption cross section,” Applied 
Mechanics and Materials, vol. 735, pp. 260-264, Apr. 2015. 

[31] K. Bogumil, J. Orphal, and J. P. Burrows, “Temperature 
dependent absorption cross sections of O3, NO2, and other 
atmospheric trace gases measured with the SCIAMACHY 
spectrometer,” in Proc. of Ers-Envisat-Symposium, 2000, pp. 
1-11. 

[32] A. Hearn, “The absorption of ozone in the ultra-violet and 
visible regions of the spectrum,” Proc. of the Physical 
Society, vol. 78, no. 5, pp. 932-940, Nov. 1961. 

 
Michael David received his B.E. degree in 
electrical and computer engineering and M.E. 
degree in telecommunication engineering from 
Federal University of Technology, Minna, 
Nigeria in 2004 and 2010, respectively. The 
Ph.D. degree in electrical engineering was 
conferred on him by Universiti Teknologi 
Malaysia (UTM), Skudai Johor, Malaysia in  

2016 for his work on visible absorption based ozone sensors. He 
currently is a member of the Lightwave Communication Research 
Group, UTM. His research focuses on absorption spectroscopy for 
gaseous ozone concentration measurement. 

 
Mohd Haniff Ibrahim received his B.E. 
degree in telecommunications engineering 
from University of Malaya, Kuala Lumpur, 
Malaysia in 1999. He was awarded the Ph.D. 
degree by UTM in 2007 for his work on 
polymer based multimode interference devices. 
Now he is an associate professor and researcher 
with the Lightwave Communication Research 

Group, UTM. His research interests include simulation, 



JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY, VOL. 14, NO. 3, SEPTEMBER 2016 

 

204 

fabrication, and characterization of polymer based optical devices 
and spectroscopic based sensors for environmental monitoring. 
 

Sevia Mahdaliza Idrus received her B.E. 
degree in electrical engineering in 1998 and M.E. 
degree in engineering management in 1999, both 
from UTM. She obtained her Ph.D. degree in 
optical communication engineering from 
University of Warwick, Coventry, United 
Kingdom in 2004. Now she is a professor and 
researcher with the Lightwave Communication 

Research Group, UTM. Her research interests include optical 
communications systems and networks, optoelectronic design, and 
engineering management. 
 

Nor Hafizah Ngajikin received her B.E. and 
M.E. degrees in electronic engineering from 
UTM 2001 and 2004, respectively. She was 
awarded the Ph.D. degree from UTM for her 
work on MEMS Fabry Perot optical tunable 
filters in 2011. Now she is a senior lecturer and 
researcher with the Lightwave Communication 
Research Group, UTM. Her research interests 

include analytical modeling of semiconductor-based Fabry Perot 
devices and sensors development for biomedical applications. 

Asrul Izam Azmi received his B.E. and M.E. 
degrees in electrical engineering from UTM in 
2001 and 2004, respectively. He received his 
Ph.D. degree from University of New South 
Wales, Sydney, Australia in 2012. His Ph.D. 
work was related to optical fiber sensors. Now 
he is a senior lecturer and the Head of the 
Lightwave  Communication  Research  Group,  

UTM. His research interests include the development of fiber 
grating-based sensing techniques and applications of fiber grating 
sensing technology in engineering areas. 
 
 

Tay Ching En Marcus received his B.E. degree 
in electrical and telecommunications 
engineering from UTM in 2012. The Ph.D. 
degree in electrical engineering was conferred 
on him by UTM in 2015 for his work on 
ultraviolet absorption based ozone sensors. He is 
a lecturer with the Faculty of Engineering and 
Computing,  First  City  University  College,  

Petaling Jaya, Malaysia. He is also a graduate engineer registered 
with the Board of Engineers Malaysia. His research focuses on 
ultraviolet absorption spectroscopy for gaseous ozone 
concentration measurement.  

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




