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Abstract 

 
In this paper, the approximate solution to Magnetohydrodynamics Stagnation Point 
Flow over an inclined Shrinking/Stretching Sheet with Suction/injection was analyzed 
via the Adomian Decomposition. The governing partial differential equations (PDEs) 
were reduced with the help of similarity variables to non linear coupled ordinary 
differential equations (ODEs). The effects of various pertinent parameters were 
presented numerically and graphically. Numerical comparisons were carried out with the 
existing literature and a good agreement was established. The angle of inclination was 
found to enhance the velocity profile.   

   
      Keywords: Angle of inclination; stagnation point; magnetohydrodynamics; adomian 

                       decomposition method. 

 
1         Introduction 
 

Magnetohydrodynamic flows with or without the movement of heat in an electrically conducting 
fluids have attracted a large interest in the context of metallurgical fluid dynamics, 
aerothermodynamics, astronautics, geophysics, nuclear engineering and applied mathematics. Carrier 
and Greenspan (1960) considered unsteady hydromagnetic flows past a semi-infinite flat plate 
moving impulsively in its own plane. Gupta (1960) considered unsteady magneto-convection under 
buoyancy forces. Singer (1965) carried out further study on unsteady free convection heat transfer 
with magnetohydrodynamic effects in a channel regime. Pop (1969) works on transient buoyancy-
driven convective hydromagnetics from a vertical surface. Tokis (1986) implored the Laplace 
transforms to analyze the three dimensional free-convection hydromagnetic flows near an infinite 
vertical plate moving in a rotating fluid when the plate temperature undergoes a thermal transient. 
The influence of oscillatory pressure gradient on transiently rotating hydromagnetic flow was 
reported by Ghosh (1993). 
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Abd-El Aziz (2006) carried out a study on the thermal radiation flux effects on unsteady 
Magnetohydrodynamics micropolar fluid convection. Ogulu and Prakash (2006) in their work, 
presented an analytical solutions for variable suction and radiation effects on dissipative-free 
convective, optically-thin, Magnetohydrodynamic flow using a differential approximation to describe 
the radiative flux. Recent studies involving thermal radiation and transient hydromagnetic 
convection with specie transfer and viscous heating can be found in the analyses of Prasad et al. 
(2006) and Zueco (2007). In many geophysical and metallurgical flows, porous medium can arise 
also. Classically, the Darcian model is used to showcase the bulk effects of porous materials on flow 
dynamics and is valid for Reynolds numbers based on the pore radius. Chamkha (1996) works on 
the transient-free convection Magnetohydrodynamic boundary layer flow in a fluid-saturated porous 
medium channel, and later Chamkha (2001) extended the study to consider the influence of 
temperature-dependent properties and inertial effects on the convection regime. B´eg et al. (2005) 
presented perturbation solutions for the transient oscillatory hydromagnetic convection in a Darcian 
porous media with present of heat source. Chaudhary and Jain (2008) carried out the influence of 
oscillating temperature on Magnetohydrodynamic convection heat transfer past a vertical plane in a 
Darcian porous medium. Lately, Variational iteration method was applied for squeezing MHD Nano 
fluid flow in a rotating channel with the lower stretching porous surface, see Shahmohamadi and 
Rashidi (2016) for example. More extensive works as contained in the works of Mishra and Bhatti 
(2017), Rashidi et al. (2014), Sheikholeslami and Bhatti (2017), Abbas et al. (2017) and Bhatti and 
Rashidi (2016). 
 
The Adomian decomposition method was introduced by the American mathematician, George 
Adomian. It is based on the search for a solution in the form of a series and on decomposing the 
nonlinear operator into a series in which the terms are calculated recursively using Adomian 
polynomials (Adomian 1994). There are many merit of this technique over classical techniques. It 
avoids perturbation in order to find solutions of given nonlinear equation. This method provides an 
accurate approximation of the solution. As a main advantage of this Method over traditional 
numerical methods, the decomposition procedure of Adomian does not require discretization of the 
solution. Therefore, unlike other numerical methods, this method does not result in any large system 
of linear or nonlinear equations. Thus, it is not affected by computation round off errors and the 
solution is found without taking a long time and a large amount of computer memory.  
 
This study is a new advancement in the literature in which a decomposition approach for 
Magnetohydrodynamics stagnation point flow over an inclined shrinking/stretching sheet with 
suction/injection is presented. 
 

2         Problem formulation 
 

Considering a steady two-dimensional incompressible, non rotational flow of a 
Magnetohydrodynamics fluid, near a stagnation point over a permeable shrinking/stretching sheet 
coinciding with the plane at z=0. Following the work of Bhatti et al. (2018) in an inclined plane at 

angle  , the governing equations for continuity and momentum equation can be written as: 

0
u v w

x y z

  
  

  
                                                                                                                     (1) 
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,                                            (2)  

 
2

2
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u v w B v v gSin

x y z y z
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 ,                                            (3) 

2

2

w w w P w
u v w

x y z z z
 
     

     
     

 ,                                                                               (4) 

 
subject to the boundary condition: 

0

0,  0

,   ,   ,   0

,   0,   ,   

u v w z

u bx v cx w S z

u ax v w az z

   


     
    

                                                                                         (5)  

2 2 2

0

1 1

2 2

w
P P a x w

x
  


   


, where 0P  is the stagnation pressure. 

 
The velocity along the x , y  and z  axes are respectively u , v  and w   is the density,   is the 

viscosity, a is the strength of the stagnation flow, b is the stretching rate ( 0b ), and c is the 

location of the shrinking origin,   is the kinematic viscousity, σ is the electrical conductivity, 0B

external magnetic field and S is the suction. 
 
The similarity variables  are defined as follows: 
 

a
z


 ,     /u axf , v cxh , and  w a f                                                                   (7) 

 

where ,  f  , and   h   are the non-dimensional distance, velocity and function h. 

 
Introducing the transformation in (7) into (2) to (4), we obtained the simplified form as   
 

 / / / / / /2 /

/ / / /

1 1 in 0

0

f ff f M f KS

h f h fh Mh KSin





       


     

                                                                                     

(8)                                           
 
with corresponding boundary conditions: 

                                  
   

   

/

/

0 : 0 ,   0

: 1,   0

f k f

f h

 



   


     

                                                                                                              

(9)                         
                                       



 

A. Yusuf, G. Bolarin, F.A. Oguntolu, M. Jiya and Y.M. Aiyesimi 
                                                            

 

 

127                                                                  JNSMB, Vol. 2 (2019). ©NSMB; www.tnsmb.org 
 

 in which : 
2

0B
M

a




 , 

2

g
K

a x


 , 

b

a
    

S
k

a
                                                                                                        

are the Hartmann number, gravitational Parameter, shrinking/stretching parameter, and 
Suction/injection parameter  respectively.  
 

3          Implementation of improved Adomian Decomposition Method 
 

We start by introducing the improved Adomian decomposition method to get the solution by letting  
 

   
3 2

3 2
   and 

d d
L f L h

d d
 

 
         so that equations (8) becomes  

  

                  
   

 

1 / / /2 /

1 1

1 / /

2 2

1 1 inL f L ff f M f KS

L h L f h fh Mh KSin

 

 





            


           

                                                                   

(10) 

where     1 1

1 2   and    L d d d L d d                                                                                  

(11) 
 
Discretizing equation (10), we obtain  
 

                   
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  (12) 
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Using equation (13) as the starting points in (12), we obtained the final solution as: 

   

   

4

1

4

1

n

n

n

n

f f

h h

 

 






 


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




                                                                                                                                         

(14) 
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0   / / 0f   / / 0f   / / 0f   / 0h   / 0h   / 0h  

 Wang 
(2008) 

Bhatti et al 
(2018) 

Present 
Results 

Wang 
(2008) 

Bhatti et al 
(2018) 

Present 
Results 

0 1.232588 1.232587765 1.232760858 0.811301 0.81130132 0.8122505037 

0.1 1.14656 1.14656100 1.146776576 0.86345 0.863451660 0.8632814244 

0.2 1.05113 1.051129994 1.051615715 0.91330 0.91330283 0.9103133911 

0.3 - 0.94681611 0.9478629348 - 0.96111587 0.9529744453 

0.5 0.71330 0.71329495 0.7166611172 1.05239 1.05145843 1.025327202 

1 0 0 0 1.25331 1.25331413 1.202451078 

2 -1.88731 -1.88730667 -1.986101147 1.58957 1.58956678 1.075360359 

5 -10.2647 -10.2647493 -9.397856609 2.33810 2.33809899 1.965189020 

Table 1: Comparison of results between Numerical and Analytical for 0   with 

0M k K      
 
 
 

0   / / 0f   / / 0f   / / 0f   / 0h   / 0h   / 0h  

 Wang 
(2008) 

Bhatti et al 
(2018) 

Present 
Results 

Wang 
(2008) 

Bhatti et al 
(2018) 

Present 
Results 

-0.25 1.40224 1.40224081 1.402780907 0.66857 0.66857275 0.6697136814 

-0.5 1.49567 1.4956676 1.496430342 0.50145 0.50144758 0.504494669 

-0.75 1.48930 1.48929824 1.491565016 0.29376 0.29376251 0.2977485389 

-1 1.32882 1.32881688 1.333008938 0 0 0 

-1.15 1.08223 1.08223117 1.071447454 -0.29799 -0.29799548 -0.258003298 

-1.2465 0.55430 0.58428167 0.6967789475 -0.99904 -0.94776590 -0.558263842 

Table 2: Comparison of results between Numerical and Analytical for 0  with 

0M k K      
 
 

4           Results and discussion 
 

In order to establish the effectiveness of the present technique, the nonlinear coupled ordinary 
differential equations (8) alongside the boundary conditions (11) has been solved by the improved 
Adomian Decomposition Method as seen in Section 3.0 and results have been compared with the 
existing results of Wang (2008) and Bhatti et al(2018) for different values of   in Table 1 and 2 
above. There is a good agreement between the current results and the existing results. 
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Figures 1 and 2 displays the variations of Hartmann number on velocity f/ and h on the shrinking 
sheet and it was observed that the boundary thickness increases for f/ as Hartmann number increases 
while  it reduces for h as a result of the drag like forces from the Hartmann number.  Figures 3 and 4 
showcases the effects of Hartmann number on velocity and function h on the stretching sheet. Same 
effects were noticed as in Figures 1 and 2 respectively. Figures 5 and 6 presents the variation of 
shrinking parameter on velocity f/ and function h. The shrinking parameter is observed to be a 
reducing agent on the velocity and an increasing agent on function h.  
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Figures 7 to 10 shows the variation of angle of inclination on the velocity f/ and function h on the 
shrinking sheet and stretching sheet respectively. The angle of inclination is observed to be an 
increasing agent on the velocity and function h on both sheets, which is, as a result of gravity. It is 
also worthy to mention that the boundary layers for both the velocity and function h are observed to 
be thicker on the stretching sheet than shrinking sheet since stretching sheet is in favor  gravity.    
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Conclusion 
 

This present work considered the decomposition approach for magnetohydrodynamics stagnation 
point flow over an inclined shrinking/stretching sheet with suction/injection  by considering the 
work of Bhatti et al. (2018) in an inclined sheet. The PDE formulated in rectangular system was 
reduced to ODE via some similarity variables. The non linear coupled ODE depends on some 
physical parameters such as Hartmann number (M) , shrinking/ stretching parameter ( ) and 
gravitational parameter K. the following observation were made:- 

1.  The graphs presented in this work clearly satisfy the boundary conditions, which imply 
that the problem is well posed. 

2. The larger values of the dimensionless distance is choosing to be at 2  . 

3. The results presented in this work were compared with the results of the existing 
literatures as seen in Table 1 to 2 and a good agreement was established. 
4. All the parameters varied on velocity and function h has same effects on both stretching 
and shrinking sheet, but the boundary layers are generally thicker on the stretching sheet. 
5. All the results presented in this work conformed with reality which further depict that the 
problem is well posed and the efficiency of the method. 
6. Unlike Wang (2008) and Bhatti et al (2018), the present method is simpler, requires no 
linearization of the original problem, and provide results on all points of .    
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