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Abstract

Regression analysis requires the homoscedasticity condition to fit

and predict time series observations. Basically, most real life data

have a tendency to exhibit changing in variances which violates

the homoscedasticity assumption. As such, it is appropriate to

consider outlines that allow the variance to be subjected to the

history of the data. This study therefore compare some het-

eroscedastic models in fitting and forecasting generator noise from

one location to another. A stationarity and heteroscedasticity

procedures are considered on the data across the locations using

Augmented Dickey Fuller (ADF) and Breusch-Pagan (BP) tests

respectively. Also, the four heteroscedastic models of different

orders are used to model the data. Thereafter, the inadequacies

of the models selected are determined for future forecasting

in which all generating plants noise data were found to be

stationary and heteroscedastic. GARCH(1,1) and GARCH(1,2)

are used to fit and forecast the data. It was observed that

forecasted values are stationary over time across the locations.
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1. Introduction

According to [13], noise pollution is one of the major problems facing people
across the globe especially in the city where the number of industries, machinery,
vehicles use, of electrical generating plants, use of vibrating and pressurizing
equipment during road and building constructions and so on over time. This
has led to increase in the noise. Meanwhile, rigorous sound upsets the serenity
of the atmosphere of a location and can result to a negative impact on society,
climate as well as human fitness. Electrical generating plant noise, vehicle traffic
noise and pressure, industrial noise, machinery noise, and construction noise and
are joint causes of noise pollution that directly undermine climate variation [11].
The quantification of health effects for other noise sources including wind turbine,
neighbour, industrial, and combined noise remain research priority [5].
The long-term noise monitoring data using artificial neural networks (ANN) and
autoregressive integrated moving averages (ARIMA) models was studied by [7]
in which the ANN models observed to be performed better than the ARIMA.
Also, the configuration of ARIMA forecasting model is steering and as such the
time-series predictive model utilizing ANN method. In [1], the generators noise
was evaluated and its impact on human and the atmospheric condition was exam-
ined by taking samples from noise generation across different locations in a city.
Thus, the investigation revealed that noise level at the sample locations beyond
the recommended level for residential and industrial areas by World Health Or-
ganization (WHO). The effective models was developed which predict the levels
of noise in an area using a hybrid model [4]. The model is based on two differ-
ent approach that is Time Series Analysis (TSA) and Artificial Neural Network
(ANN). The hybrid of the two models revealed a significant variation in predic-
tion of the steps ahead. An IoT-based noise monitoring system was set up by
[14] to capture the environmental noise data, and a two-layer short-term memory
(TLSTM) network was suggested for the prediction of noise for the large data.
The proposed model outperformed the other existing typical approaches. It was
concluded that the TLSTM could disclose variation in noise levels for a day and
also has better forecasting precision.
The time series data may possess properties like heteroscedasticity, volatility clus-
tering, skewed tails, absence of autocorrelations and outliers in the response vari-
ables. The Autoregressive Conditional Heteroscedasticity (ARCH) model that
contains normal errors which was initially introduced by [6] captured some of
conventional features of time series data. Also, [3] further introduced additional
parameter(s) of the ARCH model to generalized ARCH model (GARCH) to cap-
ture the phenomenon earlier mentioned in time series data. However, tradition-
ally, time series were modeled with normal innovations. Unfortunately, such
models still failed to suciently capture the main conventional features of some
time series data, such as the skewed tails and leptokurtic. Several researches
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have been examined on the efficiency of GARCH models when the distribution
of error term is violated. For example, GARCH models with skewed general-
ized error distribution (SGED) was suggested by [10] and [2]. The robustness of
volatility modeling of GARCH(1,1) was investigated by [8] with first order Expo-
nential GARCH [EGARCH(1,1)] model using the monthly stock market returns
of seven emerging countries. It was found that the GARCH(1,1) model formed
better than the EGARCH model.
Regression analysis requires the homoscedasticity condition to fit and predict the
time series observations. Basically, most real life data have a tendency to exhibit
changing in variances which violates the homoscedasticity assumption. As such,
it is appropriate to consider outlines that allow the variance to be subjected
to the history of the data. Indeed, a robust estimation can be studied when
there is a sturdy notion of heteroscedasticity. In homoscedastic phenomenon, it
is expected that the discrepancy of the error term is constant for all values of
x. Heteroscedasticity permits the variance to be dependent on x, which is more
common for many real scenarios. For example, the variance of the generator noise
is often different from one location to another. In this study, electrical generating
plant is studied, it is the major contributor of noise pollution in the selected
locations across the city of Kwara State of Nigeria. The study further evaluated
some hetroscedastic models in fitting and forecasting generator noise from one
location to another.

2. Materials and Methods

This study was conducted at four different locations in Ilorin township of Kwara
State. This is an urban area predominately with residential development, shop-
ping complexes, offices and industries. Actual noise levels in these selected areas
were measured. Four readings each from the four locations were taken with the
aid of the sound level meter, at an interval of thirty seconds for a period of one
hour and the average for each location was recorded. The readings were taken
from 8am to 9am in the morning, 1pm to 2pm in the afternoon, 4pm to 5pm in
the evening, and 9pm to 10pm at night respectively. The plot that displays the
observed values on Y-axis and time intervals on the X-axis that was used to assess
the behaviour of the data over time are presented in the Figure 1 for the four
locations. The data obtained were analyzed to examine whether stationary or not
Augmented Dickey Fuller (ADF) statistic. Also, heteroscedasticity phenomenon
were tested for various data collected across locations using Breusch-Pagan (BP)
test before the models of different orders were used to fit the data with the aim
of selecting the best model. Thereafter, the inadequacies of the models selected
were determined for future forecasting. Thus, the GARCH model that best fit
and forecast the noise data is determined using AIC, BIC and HQIC criteria.
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2.1. Analytical Framework of ARCH/GARCH Family Models. The spec-
ifications of ARCH and GARCH are the mean and variance equations. The con-
ditional heteroscedasticity in time series denoted by yt can be modeled using
ARCH by expressing the mean equation as follows:

(1) yt = α0 + α1yt−1 + α2yt−2 + . . .+ αpyt−p + εt = α0 +

p∑
i=1

αiyt−i + εt

where εt NIID(0, σ2). Equation (1) is an autoregressive model of order p and
the mean equation is constant for all ARCH and GARCH models.

2.2. The Autoregressive Conditional Heteroscedastic (ARCH) Models.
The conditional variance equation of the ARCH (q) model is specified by the
series σ2t in the form:

(2) σ2t = α0 + α1ε
2
t−1 + α2ε

2
t−2 + . . .+ αqε

2
t−q = α0 +

q∑
i=1

αiε
2
t−i

The parameter of ARCH (q) model can be obtained by ordinary least square
(OLS) method of estimation. The coefficient of the ARCH terms (αi) can be
tested for, weather is statistically significant or not to determine the presence
of ARCH component. The best fitting ARCH (q) model is estimated and the
squares of the error (ε2) is obtained. Thus, (ε2) is regressed on a constant (α0)
and the lagged values of the error term
ε̂2t = α0 +

∑q
i=1 α̂iε

2
t−i

where q is the lag order. The significance of ARCH parameter are tested as
follows:

(3) H0 : αi = 0, i = 1, . . . , q V s H1 : αi 6= 0

The test statistic:

(4)
SSR0 − SSR1

SSR1(T − 2m− 1)

where
SSR1 =

∑T
t=1 ε

2
t , ε

2
t is the residual of least square of the linear regression and

SSR0 =
∑T

t=1

(
a2t − w

)
, w = 1

T

∑T
t=1 a

2
t is the sample mean of a2t

Decision rule: If p-value of the test statistic is less than 0.05, H0 is rejected in
favour of H1 and conclude that there is an ARCH effect.

2.3. Generalized Autoregressive Conditional Heteroscedastic Model.
The specification of GARCH (p, q) model is given as
(5)

σ2t = α0+α1ε
2
t−1+. . .+αqε

2
t−q+β1σ

2
t−1+. . .+βpσ

2
t−p = α0+

q∑
i=1

αiε
2
t−i+

p∑
i=1

βiσ
2
t−i
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where αi are parameter of the ARCH component; βi are parameter of the GARCH
component. The coefficients (α0, αi and βi) are non-negative such that αi+βi < 1
to achieve stationarity. To test for GARCH effect in (4), the best fitting AR(q)
model is estimated which is a lag order that has the lowest information criteria
and highest log-likelihood ratio, see [3] and [12]. Then, we compute and plot the
autocorrelations of ε̂2t by ∑T

t=i+1 (ε̂2t − σ̂2t )(ε̂2t−1 − σ̂2t−1)∑T
t=1 (ε̂2t − σ̂2t )

2

3. Data analysis and Results

This section consists of detail description of the analysis of the data on the gener-
ating plants noise which consists of four locations in Nigeria namely, Geri-Alimi,
Unity, Taiwo and Fate. The data were collected in seconds sparing from 30sec to
3600sec from the four locations, which creates 120 observations.

3.1. Graphical Display of Data. For the purpose of the flow of the analy-
sis, the data on noise measured per second from generating plants at different
locations are shown in figure 1 below.

Figure 1: Time Series Plot of Generating Plants Noise from Different Locations

The Figure 1 above indicated clearly that the generating plants noise appeared to
be constant over time, at different locations, with systematically visible pattern,
no structural breaks and no outlier components found with no constant increasing
or decreasing. This is indeed an indication that the data is stationary. Also, a
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further test is performed to justify the stationary status using autocorrelation
function, partial autocorrelation function and ADF test.

3.2. Model Identification process for the Displayed Data. The Figure 2
and 3 below displayed the ACF and the PACF for consecutive lags in a specified
range of lags.

Figure 2: ACF plots of the Generating plants Noise from Different Locations

The ACFs tend or approximate to zero as lag increases, indicating a typical case
of stationary series for a stationary process, the main characteristics of the ACF
plot suggests that the autocorrelations of the series tend to zero when the lag
increases [9].
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Figure 3: PACF plots of the Generating plants Noise from Different Locations

Again, the partial autocorrelations are examined in the same vein, just like that
of the ACF with the partial autocorrelations approximating to zero as the lags
increases thereby making the series to be stationary.

3.3. Testing for Unit Root / Stationarity in Generating Plant Noises.
The ADF statistic tests the null hypothesis that the data series have a unit root
with the alternative that the data series is stationary. The results obtained are
presented in Table 1 below.

Table 1: ADF Test for unit root with respect to the locations

Location Test Values Lag order (H0) P-value Hypothesis Decision Remark
Geri Alimi -4.7048 4 0.01 Unit root Reject (H0) Stationary

Unity -4.4855 4 0.012 Unit root Reject (H0) Stationary
Taiwo -3.6605 4 0.0308 Unit root Reject (H0) Stationary

Fate -4.7104 4 0.01 Unit root Reject (H0) Stationary

Table 1 above shows the ADF values -4.7048, -4.4855,-3.6605 and -4.1704 with
p-values 0.010, 0.012, 0.031 and 0.010 respectively across the locations, which are
less than the critical value of 0.05. We therefore reject null hypothesis of having
a unit root in favour of alternative of being a stationary series. Indeed, the tests
confirmed that the data series is stationary.

3.4. Testing for Hetroscedaticity in the Data. The test of heteroscedas-
ticity for the data across the locations at different time lags were carried out
using Breusch-Pagan test. The Breusch-Pagan tests the null hypothesis of no
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heteroscedacity against its alternative of there is heteroscedacity. The Table 2
below shows the detail of the analysis.

Table 2: Testing for hetroscedaticity in the data

Location Test Values (H0) DF P-value Hypothesis Decision Remark
Geri Aimi 9.668 4 0.0018 No Heteroscedacity Reject H0 Data is hetroscedastic

Unity 15.72 4 0.0034 No Heteroscedacity Reject H0 Data is hetroscedastic
Taiwo ”10.831 4 0.0285 No Heteroscedacity Reject H0 Data is hetroscedastic

Fate 11.177 4 0.0246 No Heteroscedacity Reject H0 Data is hetroscedastic

It was observed that the p-values of the statistic from the four locations of the
experimentation were less than the critical value of 0.05 and we therefore reject
the null hypothesis of data being homoscedastic in favour of alternative of be-
ing heteroscedastic. Indeed, the test confirmed that the data series of the four
locations is heteroscedastic.

3.5. Fitting the GARCH (p,q)Models. Different orders of GARCH models
were fitted to the stationary data of the generating plant. The parameters, AIC,
BIC and HQIC of each order of the model are displayed in Table 3 below. The
model with minimum criteria is considered as the best to capture the generating
noise rate.

Table 3: Estimated Values of the Parameter and Information Criteria of the
Fitted the GARCHs

Place Model µ ω α1 β1 α2 β2 AIC BIC HQIC
(1,1) -0.2362 -0.3034 -0.2606 0.7324 - - 0.0096 0.1145 0.052

Geri (1,2) 9.10E+01 3.06E-02 5.03E-01 1.00E-08 - 1.00E-08 -0.0275 0.1035 0.0255
Alimi (2,1) 9.10E+01 6.02E-03 1.59E-01 7.49E-01 1.00E-08 0.0342 0.1653 0.0872

(2,2) 9.10E+01 3.06E-02 5.03E-01 1.00E-08 1.00E-08 1.00E-08 -0.0073 0.1499 0.0563
(1,1) 8.9921+01 0.036803 0.111574 0.561008 - - 0.6534 0.7468 0.6912

Unity (1,2) 8.99E+01 2.34E-02 4.08E-01 1.00E-08 - 0.4491 0.577 0.6937 0.6244
(2,1) 8.99E+01 2.34E-02 4.08E-01 1.00E-08 - 4.49E-01 0.6456 0.7624 0.693
(2,2) 8.99E+01 2.34E-02 4.08E-01 1.00E-08 1.00E-08 4.49E-01 0.5938 0.7339 0.6507

Taiwo (1,1) 95.0489 0.0544 0.2429 0.2766 - - 0.6746 0.768 0.7125
(1,2) 95.0507 0.05701 0.2563 0.1229 - 0.1169 0.6915 0.8083 0.7389
(2,1) 9.51E+01 5.53E-02 2.42E-01 1.00E-08 2.70E-01 - 0.6926 0.8093 0.74
(2,2) 9.51E+01 6.41E-02 2.52E-01 3.88E-02 1.00E-08 1.42E-01 0.7079 0.848 0.7649

Fate (1,1) 85.737 0.04317 0.24162 0.2029 - - 0.3044 0.3977 0.3422
(1,2) 8.57E+01 4.47E-02 2.30E-01 1.92E-01 - 1.00E-08 0.324 0.4407 0.3714
(2,1) 8.58E+01 5.31E-02 2.23E-01 8.96E-02 1.00E-08 - 0.3208 0.4376 0.3682
(2,2) 9.51E+01 6.41E-02 2.52E-01 3.88E-02 1.00E-08 1.42E-01 0.708 0.8481 0.7648



Evaluation of Some Heteroscedastic Models of Generator Plants Noise Production 69

With regard to the parameters reported in Table 3 above, The estimated coeffi-
cient values of all GARCH (p,q) strictly conforms to the bounds of parameter,
between -1 and 1. This has made the models to be stationary. Additionally,
comparing the GARCH models above in terms of the AIC, BIC and HQIC of
(-0.0275, 0.1035 and 0.0255), (0.5770, 0.6937 and 0.6244), (0.6746, 0.7680, and
0.7125) and (0.3044, 0.3977 and 0.3422) respectively, indicates that GARCH(1,2),
GARCH(1,1), GARCH(1,1)and GARCH(1,1) are the best for Geri-Alimi, Unity,
Taiwo and Fate respectively since their estimated AIC, BIC and HQIC are smaller
as compared to other models. Based on the parameter estimates and the crite-
ria, GARCH(1,1) and GARCH(1,2) is chosen as the best model to capture the
generating noise from different locations.

3.6. Model Adequacy (Diagnostic) checking of estimated models (Stan-
dardized Residuals Tests). Having chosen the GARCH (1,1) and GARCH
(1,2) as the best or tentative models as opposed to others, based on the conclu-
sion in Table 3 above, the adequacy of the chosen model is further tested to draw
empirical conclusions regarding the model as good fit. These tests carried out
are Ljung-Box, normality test of the residuals using Shapiro-Wilk normality test
statistic and LM Arch Test. The results are reported in Table 4.

Table 4: Selected Model Diagnostic with Respect to Locations

Model GARCH(1,1) GARCH(1,2)
Place Test statistic Values P-value Values P-value

Geri Alimi Jarque-Bera Test 0.4696 0.79069 1.19568 0.5499
Shapiro-Wilk Test 0.9921 0.835 0.9874 0.4781

Ljung-Box Test 12.4541 0.2558 16.3196 0.0908
LM Arch Test 15.2688 0.22706 15.0771 0.2372

Unity Jarque-Bera Test 672.9237 0 147.7828 0
Shapiro-Wilk Test 0.8753 1.45E-08 0.92897 8.99E-06

Ljung-Box Test 4.0887 0.9433 11.8877 0.2926
LM Arch Test 3.8847 0.9854 13.3307 0.3455

Taiwo Jarque-Bera Test 1.1971 0.54961 1.318 0.5174
Shapiro-Wilk Test 0.9911 0.6509 0.9904 0.5721

Ljung-Box Test 3.0403 0.9804 3.0778 0.9795
LM Arch Test 2.8552 0.9964 3.0347 0.9952

Fate Jarque-Bera Test 1.9554 0.3762 1.972 0.3731
Shapiro-Wilk Test 0.9869 0.308 0.9866 0.2899

Ljung-Box Test 6.3663 0.7836 6.423 0.7786
LM Arch Test 7.3128 0.8362 7.3744 0.8319

Table 4 shows Ljung-Box and Jarque-Bera tests for the noise data with chi-
square statistics that give corresponding p-values. The tests are not significant,
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therefore, the residuals appeared to be uncorrelated. This indicates that the
residuals of the fitted GARCH (1,1) and GARCH (1,2) model are white noise,
as such, the model fits the series quite well (the parameters of the model are
significantly different from zero), so we can use this model to make forecasts.
Furthermore, the normality is not significant; hence, the Shapiro-Wilk test sug-
gests that the standardized residuals are normal. This also supports the fact that
the residuals of the fitted GARCH models are white noise, and the model fits the
series quite well (since one the assumptions of the residual being white noise is
normality). Hence, the model is stationary due to the presence of white noise.
The p-values of LM Arch Test also indicated that the fitted model capture the
hetroscedasticity of the data over time.

3.7. Forecasting for Future Generating Noise Using the Best Fitted
model [GARCH(1,1) and GARCH(1,2)]. A 10-step ahead sample forecast
was conducted on the data of the generating plant noise and the forecast is
visually displayed in Figure 2 and 3. The 10 horizons were forecasted based on
data from the preceding time intervals. The forecast was obtained by using data
from the previous periods to estimate the future occurrence period of the noise
using the GARCH (1,1) and GARCH (1,2) models.

Figure 4: Forecast for Future Occurrence of Noise Generating Plants Across the
Locations using GARCH (1,1)
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Figure 5: Forecast for Future Occurrence of Noise Generating Plants Across the
Locations using GARCH (1,2)

It can be seen from Figure 4 and 5 that the forecast is quite accurate. It seems
that GARCH (1,1) and GARCH (1,2) have respectively efficient in capturing the
dynamic nature of the data and forecasting. The generating plant noise seems to
be stationary over time and their estimates are within the confidence limits.

Conclusions: A class of GARCH models that appropriately describe the gen-
erating plant noise over time across four locations in Kwara State of Nigeria are
identified. The estimated coefficient values of all GARCH (p,q) strictly conform
to the bounds of parameter, between -1 and 1. This has made the models to be
stationary. Meanwhile, comparing the GARCH models using the selected crite-
ria, GARCH (1,1) and GARCH(1,2) are obviously preferred to be the best model
that captured the generating plant noises from different locations. Importantly,
the generating noises are said to be heteroscedastic and stationary over time at
considered locations. Finally, the forecasting values seems to be stationary and
their estimates are within the confidence limits.
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