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Abstract— The performance of memory system depends 

majorly on types of instruction constructs, speedup of executions, 

capacity of processing elements and scheduling techniques. Most 

scheduling techniques are faced with several challenges such as 

multiple issues, exploiting more parallelism in programs 

instructions, speedup rate of executions and support for 

conditional instructions constructs. Recent innovations in 

memory system and scheduling techniques required support for 

instruction-level parallelism (ILP) algorithm, which is 

overlapping of instructions sets for parallel processing and 

execution. To achieve these, a survey of the widely used 

techniques for exploiting of instruction-level parallelism (ILP) is 

carried out to identify their strengths and their weaknesses by 

reviewing several related works. This paper finds out the 

limitations of the various techniques for exploiting ILP and used 

these reviews to propose a new technique to overcome these 

limitations.   

Index Terms—Parallelism, algorithm, instructions execution, 

instructions constructs, basic blocks (BB), instruction-level 

parallelism (ILP), loops architectures, two-way loop technique 

I. INTRODUCTION 

In computer architecture, it is possible to influence the 

logical execution of instructions from the programs of a user 

because of some attributes of a system are readily obvious to 

the user. This potentially makes it possible to improve the 

performance of the system by altering these attributes [1], 

[22]. In the past decades CPU frequencies steadily increased at 

a continuous scale until recently when this trend stopped due 

to physical limitations in the technology of the ICs (Integrated 

Circuits; that is space between components). The opportunities 

to speed up program execution through instruction-level 

parallelism exploitation became feasible because segments of 

the program can be executed at the same time as compared 

with sequential execution speeds [2], [22], [23].   

Parallel execution at the instruction level can be achieved 

through techniques such as the superscalar execution, VLIW 

and Single Instruction Multiple Data (SIMD), while 

parallelism intrinsic in high level algorithms can be better put 

to practical use through multi-core architectures [3].  
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Fig. 1. A model of computer system depicting ILP and its relationship to 

software and hardware components [23] 

ILP is ability to overlap executions of instructions sets, 

which can be attained dynamically (hardware related) or 

statically (software related such as compiler and system 

software) [7], [22], [23]. A model of computer system 

depicting ILP and its relationship to other components such as 

software and hardware components are illustrated in Fig. 1. 

[23] 

The remainder of the paper is organized as follows. The 

next section discusses various techniques of instruction-level 

parallelism to determine their unique features and strengths. In 

section III, challenges of instruction-level parallelism 

techniques are identified. Following that, the outcome of the 

exploratory study are conversed in section IV and, finally, 

conclusions are drawn in section V. 

II. TECHNIQUES OF INSTRUCTION-LEVEL PARALLELISM 

Below are some of the widely deployed techniques for 

exploiting instruction-level parallelism in compilers/memory 

system.  

A. Loop Unrolling Technique 

Present day high-performance processors comprise 

hardware resources that support overlapped execution, 

independent instructions execution, parallel instruction 

pipelines, multiple functional components and multiple data 
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paths. This characteristic of overlapping instruction execution 

is what is called instruction-level parallelism (ILP). The use of 

hardware resources to take advantage of available ILP may 

have become commonplace but, even more interesting is the 

use of software resources to exploit ILP present in programs 

[4]. 

In general, loop unrolling technique is a paradigm code 

optimization mechanism that is combined with register 

renaming to boost ILP. These optimization codes replicate the 

original loop body iteratively, adjust the loop exit code and 

remove inessential branch instructions (or transforms 

conditional instructions to straight instructions) [4]. The use of 

larger block output for instructions increases the chances that 

the instruction scheduler can rearrange instructions to utilize 

ILP. That notwithstanding, the efficacy of scheduler is bound 

by simulated dependencies between instructions. While, 

register renaming eliminates the simulated dependencies, the 

successive loop has more ILP presence than the primitive 

(rolled loop). Generally, compiler is responsible for 

discovering dependencies in loop bodies using process 

analysis [2], [4]. 

In applying loop unrolling, it is possible to adapt hardware 

caching approach to loop bodies by categorizing its hardware 

components such as a comparator (use to detect conditional 

instructions), a negative branch displacement and a stack-

based approach (called the loop stack) [5]. During commit 

time, when loop entry is discovered, the loop linked 

information is written on to the loop stack. This dynamic 

information takes account of the per-iteration in-loop branch 

log and the number of successful iterations per visit [4], [6]. 

The outcome of each conditional instruction executed inside 

loop iteration is registered in a prediction table for the loop. 

Upon the expiration of a loop visit, the loop predication 

table keeps the complete branch log for all successful 

iterations during the prior loop visit. In reality, majority of 

loop tend to go over a range of paths in an event of a visit and 

these patterns carry on to successive visits to the loop [4]. 

However, updating the records for these set of paths 

dynamically makes it possible to predictably initiate the entire 

loop visits by apportioning dynamic loop traces in the cache. 

The dynamic loop behavior can be distinctly recognized by 

monitoring information for each loop pair (loop head, loop 

tail); these help to monitor the behavior of hot loops in a small 

or fast loop cache and lookup table [4], [6].  

In practice, loops are accountable for the greater part of the 

execution time in several categories of the applications. 

Almost all scientific applications demonstrate approximately 

close to 90% of the time of execution in one or more loops [2]. 

Compile-time loop unrolling is widely utilized in scientific 

programs to attain higher speedups. In general-purpose 

applications (SPECint programs) several loops are available, 

though many of these loops have inherent qualities that limit 

their capacity to unroll at time of compilation [2]. The features 

of different workloads determine the different degrees of ILP 

revealed. Another advantage is the ability to estimate the 

actual number of successful loop iterations over during 

multiple visits to the same loop. The interrelationship of the 

pattern of conditional branch results provide guide to the loop 

can become a reliable predicting tool for loop entry point. [4], 

[5].  

Loop unrolling technique is a hardware-based approach, 

which captures information about past loop behavior and 

instructions present in the loop body. It gathers this 

information for an entire execution that can be suggestively 

utilized to load into instruction window. Again, it can provide 

useful information for constructing instruction window 

containing thousands of instructions, as a consequence higher 

levels of ILP is revealed [4], [5], and [23]. 

B. Superscalar Technique 

Superscalar machines have ability to issue multiple 

autonomous instructions per clock cycle when these 

instructions are suitably scheduled by the compiler and 

runtime scheduler. Simply put, multiple issues combined with 

dynamic scheduling are referred to as superscalar [9]. 

Superscalar architecture for processor is designed for common 

instructions sets such as integer and floating-point arithmetic, 

loads, stores and conditional branches, which can be initiated 

simultaneously and executed individually [1], [2].  

The superscalar machine is invented to improve the 

performance of the execution of scalar instructions in most 

applications (the bulk of these operations are on scalar 

quantities). Essentially, the superscalar approach provides the 

potentials to execute instructions independently and 

concurrently in different pipelines [1], [2].  

The exploitation of this concept can be expanded to allow 

instructions to be executed in an order different from the 

program order. In general, the superscalar model of two 

integers, two floating-point and one memory (either load or 

store) operations can be executed at the same time as depicted 

in Fig. 2. There are multiple functional units that are 

implemented as a pipeline to support parallel execution of 

diverse instructions [1].  

 

For(i=0;i<100:i++)

a(i)=a(i)+c;

for(i=0;i<100:i=i+4){

a(i)=a(i)+c;

a(i+1)=a(i+1)+c;

a(1+2)=a(i+2)+c;

a(i+3)=a(i+3)+c;}

i
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Fig. 2: Loop unrolling architecture and code.  [8] 

C. Super Pipelining Technique 

Super pipelining technique attempts to achieve greater 

performance by taking advantage of the fact that many 

pipeline stages carry out tasks that require less than half a 

clock cycle. Consequent upon this, a doubled internal clock 

speed allows the performance of two tasks in one external 

clock cycle. The pipeline has four stages: instruction fetch, 

operation decode, operation execution and result write-back. 

Figure 3 shows the super pipelining architecture in that the 



base pipeline issues one instruction per clock cycle and can 

perform one pipeline stage per clock cycle [1], [2]. 
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Fig. 2. Superscalar architecture. [1] 
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Fig. 3. Supers pipelining architecture. [1] 

 

D. Single Basic Block Technique 

The execution of a single basic block of instructions on 

machine is partitioned into a series of independent operations 

referred to as execution cycle of instruction. The instruction 

pointer (or program counter) maintains the address of the 

successive instruction. The instruction queue keeps details 

about instruction to be executed. There are five basic steps for 

executing a machine instruction if instruction makes use a 

memory operand; fetch operand and store output operand 

[10], [23].  

 

E. Very Long Instruction Word Technique 

Very Long Instruction Word (VLIW) is machine in which the 

compiler is responsible for initiating package of instructions 

for concurrent multiple issues without interference of the 

hardware [1]. The compiler is concern dynamically with 

reaching decision on multiple-issue or multiple-issue side by 

side static scheduling. Compiler takes the role for scheduling 

instructions, simplifying hardware and software complexity 

[9]. Decoupled architectures combines the best features of 

static scheduling of register-to-register instructions and 

dynamic scheduling of memory operations (buffers) [9].  

 

F. Trace Scheduling Technique  

Trace scheduling is the formerly deployed for VLIW 

architecture. Trace describes sequence of straight line 

instructions executed within specific data or collection of 

operations that make up the potential path based on branches 

predicated. Trace scheduling determines most likely order of 

instructions and allocates the instructions in this path. Tools 

are designed for loops (such as unrolling) while that of 

branches is static branch predication [9]. 

 

G. Pipeline Parallelism Technique 

Flynn, Weiss and Smith introduced pipelining in the 

architecture of the CPUs to permits instructions execution in 

minimum time possible [11], [12]. This is done by partitioning 

each instruction set into several segments that need different 

hardware for possibility of taking a cycle. A CPI (cycle per 

instruction) equal to one can be attained given any scenario to 

be true [11].  
 

 
 

Fig. 4. Architecture of pipelining of instructions. [12] 

 

Pipelined machines increases hardware parallelism, as a 

result of increases in the measure of parallelism that a 

complier generates keeps all the components of hardware units 

active. However, these various segments vary for different 

processors and instructions type. These instructions include: 

fetch and decode, generate address and fetch data for memory 

instructions, execute and write back. The architecture is 

realized for such n-segments can be determined in an 

instruction (n = pipeline depth). 

 

H. Multiple Issue of Instructions Technique 

Multiple issue of instructions technique takes advantage of 

parallelism inherent in programs of application. This process 

include: sequential stream of codes, compare and control data 

dependencies found in instruction, identifying sets of 

independent instructions to be issued concurrently without 

altering the correctness of program. VLIW (Very Long 

Instruction Word) separates and checks for 

dependent/independent instructions [2], [8]. The compiler 

completes the entire process of execution and produces a 

parallelized machine code format of instructions from 

previous of sequential code by grouping independent 

operations to generate one VLIW that does not rely on 

hardware for its final scheduling. Such instructions are not a 

single assembler-like operation but bundle of several of such 

operations issued simultaneously [1], [8]. 

This case is different for superscalar machines because, 

they reckon on hardware for scheduling instructions. In this 

architecture, a specifically large portion of the silicon area of 

processor is reserved for the analysis of potential 

dependencies within instructions at run-time to identify more 

candidates for concurrent issue. The locality of codes for 

calling block and the called block could pose a major 

challenge for simultaneous instructions issue logic in 

superscalar scheduling. Both techniques depend on hardware 

for control logic [2], [8]. 

Software pipeline rebuilds loops iterations comprising 

individual iteration from several other instructions loops 

iterations. The size of code diminishes for software pipelining 



as compared to unrolling. It provides special software feature 

to rotate register banks, multiple issues and instructions 

predicate. Another benefit of software pipeline is to render 

high performance loop and exploit more ILP [9]. Modulo 

Scheduling is simple and widely deplored software pipelining 

technique that is very efficient approach suitable for single 

basic-block loops, but it does not address properly the 

software pipelining of the loops containing conditional 

constructs [14]. 
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Fig. 5. Types of ILP architectures showing superscalar, dataflow and VLIW. 

[13] 

High ILP can be exploited from loop because inherent 

quality of iterating on sequence of instructions available 

within its body giving rise to high special and locality present 

for these structures. Compilers recognize, replicate copies of 

loop bodies, perform software pipelining, provide improved 

instruction schedules and expose higher levels of ILP [4].  

The branches elimination and control dependences are 

achieved by applying method of transformation algorithm 

[15], [16], [17]. 

III. CHALLENGES OF INSTRUCTION-LEVEL 

PARALLELISM TECHNIQUES 

A. Branch Instruction Prediction 

Present day microprocessors need extremely correct 

prediction of branch to attain better performance. New 

predictors types proposed over time produces very high 

accuracy requiring complex hardware are unable to deliver 

single cycle predictions. These techniques generally make use 

of complex computations and several table lookups which 

account for latency of several cycles per prediction as well as 

the bid to maintain clock frequencies [18]. 

Gshare predictor is a branch instruction prediction 

mechanism that takes advantage of a fixed length history of 

the several recent branch results for every successful 

prediction carried out. While, Neural predictors is another 

branch instruction predictor that allows a predictable branch to 

make use of some segment(s) of the global branch history 

practically connected to it assigning weights to select the most 

suitable segments. Again, spotlight branch predictor is a 

simple-design branch predictor that is capable of achieving 

very strong prediction accuracy using profiled information for 

a particular section of the global history register to arrive at 

decision spotlight. Branch instruction predictors can provide 

very low latency because of one or two table lookups merged 

with simple combinational logic mechanism [19].  

The major penalty arises if significant quantity of time is 

expended when the system fetches along the wrong path (such 

as pipeline refilling time) and delays in computing 

dependencies in case of branch/conditional instructions. 

Although, the penalty for misprediction varies in degrees from 

one branch to another, a predictor makes effort to predict 

high-penalty branches that may improve performance though 

the total numbers of mispredictions remain unchanged. Most 

of branch predictors’ mechanism focus only in minimizing the 

misprediction rate but ignores the major issue misprediction 

penalty [20], [21]. 

 

B. Multiple Branch Prediction 

Delivering instructions for multiple issue systems remains a 

bottleneck as a result of the need to predict (or determine) the 

execution path that decode branches. Most basic blocks are 

usually smaller than width of issue for near future systems 

exploiting multiple branch prediction. The benefit of the rate 

instruction supply for wide-issue superscalar processors has 

long been discovered. Early studies found out that execution 

rates of well over 20 instructions per cycle (IPC) were 

possible though feasible rates would be much lower [21]. 

Recognizing that both of these execution rates and the 

decode width of near-future processors will exceed the basic 

block size of many programs. That is the motivation for the 

development of instruction supply mechanisms that could 

fetch more than one basic block per cycle by investigators 

[21], [22]. 

Another innovation in this area is the use of multiple branch 

predications such as a multiple branch predictor is that of Yeh, 

Marr and Patt often referred to as Y-MBP [21]. In PCs, index 

branch address cache (BAC) supplies details on the tree of 

basic blocks inside a specific number (say 3) basic block for 

the program counter (PC); a path through the block is chosen 

in one variation with a global history branch predictor. These 

schemes looked at capacity to supply instructions to a perfect 

execution engine, assessing an effective fetch rate (correct-

path instructions fetched per cycle). But, the actual 

performance would be lower because of limited ILP available 

and load latencies [21]. 

C. Loop Predictor 

1) Penalty predictor: It is used to determine a normal or 

high-penalty allotment to a mispredicted branch. The penalty 

predictor utilizes a PC-indexed penalty table that holds an 8-

bit penalty counter and a state bit each entry. Penalty counters 

increments by 8 for a high-penalty branch and otherwise 

decrements by 1. A branch is considered as a high-penalty if 

the time taken for the branch to flow from the fetch stage of 

the pipeline (carries out a prediction) to the retire stage (for 

the branch to be resolved) surpasses a starting point and 120 

cycles configuration for the competition [20], [23].  

2) Two-Class TAGE predictor: It produces maximum 

prediction accuracy for branches with high-penalty 

prediction instead of other branches that utilize multiple 

tables to predict for the same branch simultaneously.  

a) Loop predictor: Is made up of a prediction process 

that is based on conditions being true such as 

WITHLOOP in program, loop pattern detected and 



loop branch has been synchronized during fetch 

stage. It detects unutilized branch of this loop. 

b) Update: At retire phase, the actual outcome of the 

present branch and its two predictions created by the loop 

which is utilized to renew the loop predictors [20], [23]. 

IV. OUTCOME OF THE EXPLORATORY STUDY 

The study revealed the features that make unrolling loop, 

software pipelining and VLIW widely deployed techniques, 

and their specific limitations for exploiting ILP as summarized 

in Tables 1 and 2 respectively. 

TABLE 1. FEATURES OF UNROLLING, SOFTWARE PIPELINING 

AND VLIW 

Techniques Features 

Unrolling 

loop 

-Provides x/y times overhead if x iteration and y unrolling 

-Large code size 

-Predictable execution 

-ILP exploitation 
-Replicates loop 

Software  

Pipelining 

-Provides two times, one at prologue and one at epilogue 

-Storage constraint 

-Optimal runtime 

-Reduce code 

-ILP exploitation 

VLIW -Memory port deficiency 

-Serious memory stall 

-Basic block may be too small as much as global code motion is 

difficult 

-Exploits ILP 

 

TABLE 2. LIMITATIONS OF THE ILP TECHNIQUES 

 

 Techniques Limitations 

Loop unrolling -No support for branch/dependencies in instructions 
constructs. 

-No overlap between sub-loops of original loop body. 

-The control of execution order is solely by compiler. 

Superscalar -No support for branch instruction constructs. 

-No overlap of executions 

Super pipelining -No support for branch instruction constructs. 

-Predefined order executions/phases. 

Single Basic 

Block 

-Basic blocks are often small to accommodate large size of 

instructions window. 

-No support for interrupts because, there is only one entry 

and exit point available in block.  

-No overlap of execution. 
-Predefined order of execution of instructions. 

VLIW -It is machine dependent. 

-No support for complexity but decouples architecture to 

their simplest forms. 

Trace 

Scheduling 

-No support for branch instruction constructs. 

-Time is wasted in predication cycle for branch instructions 

constructs. 

-No consideration for controller costs for most scheduling 

algorithms. 

-Controller style of scheduling determines the cost. 

Pipeline 
parallelism 

-It depends on hardware resources such as CPU. 
-No support for branch instruction constructs. 

Multiple Issue  

of Instructions 

-Supports for instructions construct. 

-No support for branch instruction constructs. 

-Resource constrained algorithm is required to achieve 

better interaction between scheduling and floor planning. 

Realism -Scheduling realistic design contains several special 

language constructs. 

-More Realistic libraries and cost functions. 

-Scheduling algorithms must be expanded to incorporate 

different target architectures. 
-No support for multiple instructions constructs. 

 

 

A. Two-Way Loop Algorithm 

Two-Way Loop algorithm supports multiple 

issues/concurrent instructions executions of straight and 

branch paths of loops.  It modifies unrolling of loop technique 

by severally enlarging basic block for parallelism exploitation.  

1) Identify conditional branch instructions //across several 

loop unrolling 

2) Transform instructions in Step I into predicate defining 

instructions // instructions that set a specific value 

known as a predicate 

3) Instructions belonging to straight and branch constructs 

are then modified into predicate instructions // both of 

them execute according to the value of the predicate 

4) Fetch and execute predicated instructions irrespective 

of the value of  their predicate// across several loops 

unrolling  

5) Instructions retirement phase 

6) If predicate value = TRUE // continue to the next and 

last pipeline stage 

7) If predicate value = FALSE // nullified: results 

produced do not need to be written back and hence lost 

 

B. Parameters for Evaluating Performance of Instruction-

Level Parallelism Techniques 

[23] proposed parameters for evaluating ILP techniques. They 

include: Performance index, the speedup of execution of 

instructions, number of multiple instructions paths, frequency 

of executions of instruction, number of loops processes 

available to complier, utilization – capacity of compiler to 

support more parallel processes.  

 

C. Evaluation of Instruction-Level Parallelism 

Time of Execution: The impact of ILP can be measured by the 

speedup in execution time (that is speedup of ILP) is defined 

by Equation 1 

 

where, 

T0 = execution time of pipelining technique 

T1 = execution time of TWL technique 

 

Performance: According to Flynn Benchmark, Execution time 

equals to total time required to run program (that is wall-clock 

time for product development and testing) [22]. 

 

Utilization: Is number of instructions issued/number 

completed per second. The mean time that a request speeds in 

the system exposes more ILP. Cantrell [22] develops a 

benchmark and formula to compute number of instructions 

executed (µ) if the mean time of execution is T seconds, is 

given by:  



 

The mean waiting time (i.e. no parallelism is present in 

program), Tw = ∞,  

  

V. CONCLUSION 

The exploratory study reveals that the various techniques 

for scheduling and executing instructions largely depend on 

straight forward loops processing/executions as well as 

predication processes in the case of conditional (or branch) 

instruction constructs.   

This paper recommends a Two-way loop algorithm 

approach that supports exploitation ILP and improves memory 

in computer system. Two-way loop technique has support for 

multiple processing of both straight and conditional 

instruction constructs, improve memory system performance 

by removing overhead incurred for prediction processes of the 

deployed techniques.  

The execution speedup rate of computer system is better 

because of presence of many more parallel paths available to 

compilers. Two-way loop algorithm provides improved 

frequency of executions of computer system.  
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