
Exploratory Study of Techniques for Exploiting

Instruction-Level Parallelism

Misra Sanjay

Covenant University,

Ota, Nigeria.

ssopam@gmail.com

Abraham Ayegba Alfa, Mikail Olayemi Olaniyi

Federal University of Technology,

 Minna, Nigeria.

abrahamsalfa@gmail.com, mikail.olaniyi@futminna,edu.ng

Sunday Olamide Adewale

Federal University of Technology,

Akure, Nigeria.

adewale@futa.edu.ng

Abstract— The performance of memory system depends

majorly on types of instruction constructs, speedup of executions,

capacity of processing elements and scheduling techniques. Most

scheduling techniques are faced with several challenges such as

multiple issues, exploiting more parallelism in programs

instructions, speedup rate of executions and support for

conditional instructions constructs. Recent innovations in

memory system and scheduling techniques required support for

instruction-level parallelism (ILP) algorithm, which is

overlapping of instructions sets for parallel processing and

execution. To achieve these, a survey of the widely used

techniques for exploiting of instruction-level parallelism (ILP) is

carried out to identify their strengths and their weaknesses by

reviewing several related works. This paper finds out the

limitations of the various techniques for exploiting ILP and used

these reviews to propose a new technique to overcome these

limitations.

Index Terms—Parallelism, algorithm, instructions execution,

instructions constructs, basic blocks (BB), instruction-level

parallelism (ILP), loops architectures, two-way loop technique

I. INTRODUCTION

In computer architecture, it is possible to influence the

logical execution of instructions from the programs of a user

because of some attributes of a system are readily obvious to

the user. This potentially makes it possible to improve the

performance of the system by altering these attributes [1],

[22]. In the past decades CPU frequencies steadily increased at

a continuous scale until recently when this trend stopped due

to physical limitations in the technology of the ICs (Integrated

Circuits; that is space between components). The opportunities

to speed up program execution through instruction-level

parallelism exploitation became feasible because segments of

the program can be executed at the same time as compared

with sequential execution speeds [2], [22], [23].

Parallel execution at the instruction level can be achieved

through techniques such as the superscalar execution, VLIW

and Single Instruction Multiple Data (SIMD), while

parallelism intrinsic in high level algorithms can be better put

to practical use through multi-core architectures [3].

Copyright notice is 978-1-4799-5627-2/14/$31.00 ©2014 IEEE

Hardware

Compiler

Software

ILP

Memory

Fig. 1. A model of computer system depicting ILP and its relationship to

software and hardware components [23]

ILP is ability to overlap executions of instructions sets,

which can be attained dynamically (hardware related) or

statically (software related such as compiler and system

software) [7], [22], [23]. A model of computer system

depicting ILP and its relationship to other components such as

software and hardware components are illustrated in Fig. 1.

[23]

The remainder of the paper is organized as follows. The

next section discusses various techniques of instruction-level

parallelism to determine their unique features and strengths. In

section III, challenges of instruction-level parallelism

techniques are identified. Following that, the outcome of the

exploratory study are conversed in section IV and, finally,

conclusions are drawn in section V.

II. TECHNIQUES OF INSTRUCTION-LEVEL PARALLELISM

Below are some of the widely deployed techniques for

exploiting instruction-level parallelism in compilers/memory

system.

A. Loop Unrolling Technique

Present day high-performance processors comprise

hardware resources that support overlapped execution,

independent instructions execution, parallel instruction

pipelines, multiple functional components and multiple data

mailto:ssopam@gmail.com
mailto:abrahamsalfa@gmail.com
mailto:adewale@futa.edu.ng

paths. This characteristic of overlapping instruction execution

is what is called instruction-level parallelism (ILP). The use of

hardware resources to take advantage of available ILP may

have become commonplace but, even more interesting is the

use of software resources to exploit ILP present in programs

[4].

In general, loop unrolling technique is a paradigm code

optimization mechanism that is combined with register

renaming to boost ILP. These optimization codes replicate the

original loop body iteratively, adjust the loop exit code and

remove inessential branch instructions (or transforms

conditional instructions to straight instructions) [4]. The use of

larger block output for instructions increases the chances that

the instruction scheduler can rearrange instructions to utilize

ILP. That notwithstanding, the efficacy of scheduler is bound

by simulated dependencies between instructions. While,

register renaming eliminates the simulated dependencies, the

successive loop has more ILP presence than the primitive

(rolled loop). Generally, compiler is responsible for

discovering dependencies in loop bodies using process

analysis [2], [4].

In applying loop unrolling, it is possible to adapt hardware

caching approach to loop bodies by categorizing its hardware

components such as a comparator (use to detect conditional

instructions), a negative branch displacement and a stack-

based approach (called the loop stack) [5]. During commit

time, when loop entry is discovered, the loop linked

information is written on to the loop stack. This dynamic

information takes account of the per-iteration in-loop branch

log and the number of successful iterations per visit [4], [6].

The outcome of each conditional instruction executed inside

loop iteration is registered in a prediction table for the loop.

Upon the expiration of a loop visit, the loop predication

table keeps the complete branch log for all successful

iterations during the prior loop visit. In reality, majority of

loop tend to go over a range of paths in an event of a visit and

these patterns carry on to successive visits to the loop [4].

However, updating the records for these set of paths

dynamically makes it possible to predictably initiate the entire

loop visits by apportioning dynamic loop traces in the cache.

The dynamic loop behavior can be distinctly recognized by

monitoring information for each loop pair (loop head, loop

tail); these help to monitor the behavior of hot loops in a small

or fast loop cache and lookup table [4], [6].

In practice, loops are accountable for the greater part of the

execution time in several categories of the applications.

Almost all scientific applications demonstrate approximately

close to 90% of the time of execution in one or more loops [2].

Compile-time loop unrolling is widely utilized in scientific

programs to attain higher speedups. In general-purpose

applications (SPECint programs) several loops are available,

though many of these loops have inherent qualities that limit

their capacity to unroll at time of compilation [2]. The features

of different workloads determine the different degrees of ILP

revealed. Another advantage is the ability to estimate the

actual number of successful loop iterations over during

multiple visits to the same loop. The interrelationship of the

pattern of conditional branch results provide guide to the loop

can become a reliable predicting tool for loop entry point. [4],

[5].

Loop unrolling technique is a hardware-based approach,

which captures information about past loop behavior and

instructions present in the loop body. It gathers this

information for an entire execution that can be suggestively

utilized to load into instruction window. Again, it can provide

useful information for constructing instruction window

containing thousands of instructions, as a consequence higher

levels of ILP is revealed [4], [5], and [23].

B. Superscalar Technique

Superscalar machines have ability to issue multiple

autonomous instructions per clock cycle when these

instructions are suitably scheduled by the compiler and

runtime scheduler. Simply put, multiple issues combined with

dynamic scheduling are referred to as superscalar [9].

Superscalar architecture for processor is designed for common

instructions sets such as integer and floating-point arithmetic,

loads, stores and conditional branches, which can be initiated

simultaneously and executed individually [1], [2].

The superscalar machine is invented to improve the

performance of the execution of scalar instructions in most

applications (the bulk of these operations are on scalar

quantities). Essentially, the superscalar approach provides the

potentials to execute instructions independently and

concurrently in different pipelines [1], [2].

The exploitation of this concept can be expanded to allow

instructions to be executed in an order different from the

program order. In general, the superscalar model of two

integers, two floating-point and one memory (either load or

store) operations can be executed at the same time as depicted

in Fig. 2. There are multiple functional units that are

implemented as a pipeline to support parallel execution of

diverse instructions [1].

For(i=0;i<100:i++)

a(i)=a(i)+c;

for(i=0;i<100:i=i+4){

a(i)=a(i)+c;

a(i+1)=a(i+1)+c;

a(1+2)=a(i+2)+c;

a(i+3)=a(i+3)+c;}

i

i+2

i+1

i+3

I=i+4

i

i++

Fig. 2: Loop unrolling architecture and code. [8]

C. Super Pipelining Technique

Super pipelining technique attempts to achieve greater

performance by taking advantage of the fact that many

pipeline stages carry out tasks that require less than half a

clock cycle. Consequent upon this, a doubled internal clock

speed allows the performance of two tasks in one external

clock cycle. The pipeline has four stages: instruction fetch,

operation decode, operation execution and result write-back.

Figure 3 shows the super pipelining architecture in that the

base pipeline issues one instruction per clock cycle and can

perform one pipeline stage per clock cycle [1], [2].

 Integer register file Floating-point register

file

Memory

Pipelined

functional

units

Fig. 2. Superscalar architecture. [1]

S
im

pl
e

4-

st
ag

e

pi
pe

li
ne

Instructions block

KEY:

Fetch Decode Execute Write

Fig. 3. Supers pipelining architecture. [1]

D. Single Basic Block Technique

The execution of a single basic block of instructions on

machine is partitioned into a series of independent operations

referred to as execution cycle of instruction. The instruction

pointer (or program counter) maintains the address of the

successive instruction. The instruction queue keeps details

about instruction to be executed. There are five basic steps for

executing a machine instruction if instruction makes use a

memory operand; fetch operand and store output operand

[10], [23].

E. Very Long Instruction Word Technique

Very Long Instruction Word (VLIW) is machine in which the

compiler is responsible for initiating package of instructions

for concurrent multiple issues without interference of the

hardware [1]. The compiler is concern dynamically with

reaching decision on multiple-issue or multiple-issue side by

side static scheduling. Compiler takes the role for scheduling

instructions, simplifying hardware and software complexity

[9]. Decoupled architectures combines the best features of

static scheduling of register-to-register instructions and

dynamic scheduling of memory operations (buffers) [9].

F. Trace Scheduling Technique

Trace scheduling is the formerly deployed for VLIW

architecture. Trace describes sequence of straight line

instructions executed within specific data or collection of

operations that make up the potential path based on branches

predicated. Trace scheduling determines most likely order of

instructions and allocates the instructions in this path. Tools

are designed for loops (such as unrolling) while that of

branches is static branch predication [9].

G. Pipeline Parallelism Technique

Flynn, Weiss and Smith introduced pipelining in the

architecture of the CPUs to permits instructions execution in

minimum time possible [11], [12]. This is done by partitioning

each instruction set into several segments that need different

hardware for possibility of taking a cycle. A CPI (cycle per

instruction) equal to one can be attained given any scenario to

be true [11].

Fig. 4. Architecture of pipelining of instructions. [12]

Pipelined machines increases hardware parallelism, as a

result of increases in the measure of parallelism that a

complier generates keeps all the components of hardware units

active. However, these various segments vary for different

processors and instructions type. These instructions include:

fetch and decode, generate address and fetch data for memory

instructions, execute and write back. The architecture is

realized for such n-segments can be determined in an

instruction (n = pipeline depth).

H. Multiple Issue of Instructions Technique

Multiple issue of instructions technique takes advantage of

parallelism inherent in programs of application. This process

include: sequential stream of codes, compare and control data

dependencies found in instruction, identifying sets of

independent instructions to be issued concurrently without

altering the correctness of program. VLIW (Very Long

Instruction Word) separates and checks for

dependent/independent instructions [2], [8]. The compiler

completes the entire process of execution and produces a

parallelized machine code format of instructions from

previous of sequential code by grouping independent

operations to generate one VLIW that does not rely on

hardware for its final scheduling. Such instructions are not a

single assembler-like operation but bundle of several of such

operations issued simultaneously [1], [8].

This case is different for superscalar machines because,

they reckon on hardware for scheduling instructions. In this

architecture, a specifically large portion of the silicon area of

processor is reserved for the analysis of potential

dependencies within instructions at run-time to identify more

candidates for concurrent issue. The locality of codes for

calling block and the called block could pose a major

challenge for simultaneous instructions issue logic in

superscalar scheduling. Both techniques depend on hardware

for control logic [2], [8].

Software pipeline rebuilds loops iterations comprising

individual iteration from several other instructions loops

iterations. The size of code diminishes for software pipelining

as compared to unrolling. It provides special software feature

to rotate register banks, multiple issues and instructions

predicate. Another benefit of software pipeline is to render

high performance loop and exploit more ILP [9]. Modulo

Scheduling is simple and widely deplored software pipelining

technique that is very efficient approach suitable for single

basic-block loops, but it does not address properly the

software pipelining of the loops containing conditional

constructs [14].

VLIW

Dataflow

Superscalar Front end

Dependence

Independence

Front end

Dependence

Independence

Fig. 5. Types of ILP architectures showing superscalar, dataflow and VLIW.

[13]

High ILP can be exploited from loop because inherent

quality of iterating on sequence of instructions available

within its body giving rise to high special and locality present

for these structures. Compilers recognize, replicate copies of

loop bodies, perform software pipelining, provide improved

instruction schedules and expose higher levels of ILP [4].

The branches elimination and control dependences are

achieved by applying method of transformation algorithm

[15], [16], [17].

III. CHALLENGES OF INSTRUCTION-LEVEL

PARALLELISM TECHNIQUES

A. Branch Instruction Prediction

Present day microprocessors need extremely correct

prediction of branch to attain better performance. New

predictors types proposed over time produces very high

accuracy requiring complex hardware are unable to deliver

single cycle predictions. These techniques generally make use

of complex computations and several table lookups which

account for latency of several cycles per prediction as well as

the bid to maintain clock frequencies [18].

Gshare predictor is a branch instruction prediction

mechanism that takes advantage of a fixed length history of

the several recent branch results for every successful

prediction carried out. While, Neural predictors is another

branch instruction predictor that allows a predictable branch to

make use of some segment(s) of the global branch history

practically connected to it assigning weights to select the most

suitable segments. Again, spotlight branch predictor is a

simple-design branch predictor that is capable of achieving

very strong prediction accuracy using profiled information for

a particular section of the global history register to arrive at

decision spotlight. Branch instruction predictors can provide

very low latency because of one or two table lookups merged

with simple combinational logic mechanism [19].

The major penalty arises if significant quantity of time is

expended when the system fetches along the wrong path (such

as pipeline refilling time) and delays in computing

dependencies in case of branch/conditional instructions.

Although, the penalty for misprediction varies in degrees from

one branch to another, a predictor makes effort to predict

high-penalty branches that may improve performance though

the total numbers of mispredictions remain unchanged. Most

of branch predictors’ mechanism focus only in minimizing the

misprediction rate but ignores the major issue misprediction

penalty [20], [21].

B. Multiple Branch Prediction

Delivering instructions for multiple issue systems remains a

bottleneck as a result of the need to predict (or determine) the

execution path that decode branches. Most basic blocks are

usually smaller than width of issue for near future systems

exploiting multiple branch prediction. The benefit of the rate

instruction supply for wide-issue superscalar processors has

long been discovered. Early studies found out that execution

rates of well over 20 instructions per cycle (IPC) were

possible though feasible rates would be much lower [21].

Recognizing that both of these execution rates and the

decode width of near-future processors will exceed the basic

block size of many programs. That is the motivation for the

development of instruction supply mechanisms that could

fetch more than one basic block per cycle by investigators

[21], [22].

Another innovation in this area is the use of multiple branch

predications such as a multiple branch predictor is that of Yeh,

Marr and Patt often referred to as Y-MBP [21]. In PCs, index

branch address cache (BAC) supplies details on the tree of

basic blocks inside a specific number (say 3) basic block for

the program counter (PC); a path through the block is chosen

in one variation with a global history branch predictor. These

schemes looked at capacity to supply instructions to a perfect

execution engine, assessing an effective fetch rate (correct-

path instructions fetched per cycle). But, the actual

performance would be lower because of limited ILP available

and load latencies [21].

C. Loop Predictor

1) Penalty predictor: It is used to determine a normal or

high-penalty allotment to a mispredicted branch. The penalty

predictor utilizes a PC-indexed penalty table that holds an 8-

bit penalty counter and a state bit each entry. Penalty counters

increments by 8 for a high-penalty branch and otherwise

decrements by 1. A branch is considered as a high-penalty if

the time taken for the branch to flow from the fetch stage of

the pipeline (carries out a prediction) to the retire stage (for

the branch to be resolved) surpasses a starting point and 120

cycles configuration for the competition [20], [23].

2) Two-Class TAGE predictor: It produces maximum

prediction accuracy for branches with high-penalty

prediction instead of other branches that utilize multiple

tables to predict for the same branch simultaneously.

a) Loop predictor: Is made up of a prediction process

that is based on conditions being true such as

WITHLOOP in program, loop pattern detected and

loop branch has been synchronized during fetch

stage. It detects unutilized branch of this loop.

b) Update: At retire phase, the actual outcome of the

present branch and its two predictions created by the loop

which is utilized to renew the loop predictors [20], [23].

IV. OUTCOME OF THE EXPLORATORY STUDY

The study revealed the features that make unrolling loop,

software pipelining and VLIW widely deployed techniques,

and their specific limitations for exploiting ILP as summarized

in Tables 1 and 2 respectively.

TABLE 1. FEATURES OF UNROLLING, SOFTWARE PIPELINING

AND VLIW

Techniques Features

Unrolling

loop

-Provides x/y times overhead if x iteration and y unrolling

-Large code size

-Predictable execution

-ILP exploitation
-Replicates loop

Software

Pipelining

-Provides two times, one at prologue and one at epilogue

-Storage constraint

-Optimal runtime

-Reduce code

-ILP exploitation

VLIW -Memory port deficiency

-Serious memory stall

-Basic block may be too small as much as global code motion is

difficult

-Exploits ILP

TABLE 2. LIMITATIONS OF THE ILP TECHNIQUES

 Techniques Limitations

Loop unrolling -No support for branch/dependencies in instructions
constructs.

-No overlap between sub-loops of original loop body.

-The control of execution order is solely by compiler.

Superscalar -No support for branch instruction constructs.

-No overlap of executions

Super pipelining -No support for branch instruction constructs.

-Predefined order executions/phases.

Single Basic

Block

-Basic blocks are often small to accommodate large size of

instructions window.

-No support for interrupts because, there is only one entry

and exit point available in block.

-No overlap of execution.
-Predefined order of execution of instructions.

VLIW -It is machine dependent.

-No support for complexity but decouples architecture to

their simplest forms.

Trace

Scheduling

-No support for branch instruction constructs.

-Time is wasted in predication cycle for branch instructions

constructs.

-No consideration for controller costs for most scheduling

algorithms.

-Controller style of scheduling determines the cost.

Pipeline
parallelism

-It depends on hardware resources such as CPU.
-No support for branch instruction constructs.

Multiple Issue

of Instructions

-Supports for instructions construct.

-No support for branch instruction constructs.

-Resource constrained algorithm is required to achieve

better interaction between scheduling and floor planning.

Realism -Scheduling realistic design contains several special

language constructs.

-More Realistic libraries and cost functions.

-Scheduling algorithms must be expanded to incorporate

different target architectures.
-No support for multiple instructions constructs.

A. Two-Way Loop Algorithm

Two-Way Loop algorithm supports multiple

issues/concurrent instructions executions of straight and

branch paths of loops. It modifies unrolling of loop technique

by severally enlarging basic block for parallelism exploitation.

1) Identify conditional branch instructions //across several

loop unrolling

2) Transform instructions in Step I into predicate defining

instructions // instructions that set a specific value

known as a predicate

3) Instructions belonging to straight and branch constructs

are then modified into predicate instructions // both of

them execute according to the value of the predicate

4) Fetch and execute predicated instructions irrespective

of the value of their predicate// across several loops

unrolling

5) Instructions retirement phase

6) If predicate value = TRUE // continue to the next and

last pipeline stage

7) If predicate value = FALSE // nullified: results

produced do not need to be written back and hence lost

B. Parameters for Evaluating Performance of Instruction-

Level Parallelism Techniques

[23] proposed parameters for evaluating ILP techniques. They

include: Performance index, the speedup of execution of

instructions, number of multiple instructions paths, frequency

of executions of instruction, number of loops processes

available to complier, utilization – capacity of compiler to

support more parallel processes.

C. Evaluation of Instruction-Level Parallelism

Time of Execution: The impact of ILP can be measured by the

speedup in execution time (that is speedup of ILP) is defined

by Equation 1

where,

T0 = execution time of pipelining technique

T1 = execution time of TWL technique

Performance: According to Flynn Benchmark, Execution time

equals to total time required to run program (that is wall-clock

time for product development and testing) [22].

Utilization: Is number of instructions issued/number

completed per second. The mean time that a request speeds in

the system exposes more ILP. Cantrell [22] develops a

benchmark and formula to compute number of instructions

executed (µ) if the mean time of execution is T seconds, is

given by:

The mean waiting time (i.e. no parallelism is present in

program), Tw = ∞,

V. CONCLUSION

The exploratory study reveals that the various techniques

for scheduling and executing instructions largely depend on

straight forward loops processing/executions as well as

predication processes in the case of conditional (or branch)

instruction constructs.

This paper recommends a Two-way loop algorithm

approach that supports exploitation ILP and improves memory

in computer system. Two-way loop technique has support for

multiple processing of both straight and conditional

instruction constructs, improve memory system performance

by removing overhead incurred for prediction processes of the

deployed techniques.

The execution speedup rate of computer system is better

because of presence of many more parallel paths available to

compilers. Two-way loop algorithm provides improved

frequency of executions of computer system.

REFERENCES

[1]. S. William, Computer Organization and Architecture Designing

for performance. 8th Edition, Prentice Hall, Pearson Education

Inc., Upper Saddle River, New Jersey, USA, 2006. pp. 3-881.

[2]. J. Hennessy, and D. A. Patterson, Computer Architecture.

Fourth Edition, Morgan Kaufmann Publishers Elsevier, San

Francisco, CA, USA, 2007, pp. 2-104.

[3]. W. Pepijn, Simdization Transformation Strategies - Polyhedral

Transformations and Cost Estimation. An M.Sc Thesis,

Department of Computer/Electrical Engineering, Delft

University of Technology, Delft, Netherlands, 2012, pp. 1-77.

[4]. D. Kaeli, and R. A. Rosano, Exposing Instruction Level

Parallelism in Presence of Loops. A Journal of Computational

and Systems, Mexico, CIC-IPN, Vol. 8, No. 1, 2004, pp. 74-85.

[5]. S. P. Vijay, and A. Sarita, ―Code Transformations to Improve

Memory Parallelism‖. In proceedings of the 32nd Annual

ACM/IEEE International Symposium on Microarchitecture,

IEEE Computer Society, Haifa, Israel, 1999, pp. 147-155.

[6]. D. F. Bacon, S. L. Graham, and O. J. Sharp, Complier

Transformations for High Performance Computing. In Journal

of ACM Computing Surveys, New York, USA, 1994, pp. 345-

420.

[7]. R. D. A. Marcos, and R. K. David, ―Runtime Predictability of

Loops‖. In Proceedings of the Fourth Annual IEEE

International Workshop on Workload Characterization, I.C.,

Ed., Austin, Texas, USA, 2001, pp. 91-98.

[8]. L. Pozzi, Compilation Techniques for Exploiting Instruction

Level Parallelism, A Survey. Department of Electrical and

Information, University of Milan, Milan, Italy Technical Report

20133, 2010, pp. 1-31.

[9]. E. Garcia, and G. Gao, Instruction Level Parallelism. In

Publications of CAPSL on Architecture and Parallel Systems

Laboratory, Department of Electrical and Computer

Engineering, University of Delaware, Newark, DE, USA, 2012,

pp. 1-101. DOI: http://www.capsl.udel.edu

[10]. K. A. Parthasarathy, Performance Measures of Superscalar

Processor. International Journal of Engineering and

Technology, IJET Publications, UK, vol. 1, No. 3, 2011, pp.

164-168.

[11]. M. J. Flynn, Computer Architecture: Pipelined and Parallel

Processor Design. 1st Edition, Jones and Bartlett Publishers

Inc., USA, ISBN: 0867202041, 1995, pp. 34-55.

[12]. J. E. Smith, and J. Weiss, PowerPC601 and Alpha 21064: A tale

of two RISCs. In Journal of Computer, IEEE, vol. 27, Issue 6,

1994, pp. 46-58.

[13]. B. R. Rau, and J. A. Fisher, Instruction-Level Parallel

Processing: History Overview and Perspective. The Journal of

Supercomputing, Massachusetts, Boston, USA, Vol. 7, Issue No

7, 1993, pp. 9-50.

[14]. M. Lam, Software Pipelining: An Effective Scheduling

Technique for VLIW Machines. In Proceedings of ACM

SIGPLAN Notices – Best of Conference on Programming

Language Design and Implementation, New York, NY, USA,

vol. 39, No. 4, 2004, pp. 244-256.

[15]. S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and

W. W. Hwu, ―A Comparison of Full and Partial Predicated

Execution Support for ILP Processors‖. IEEE Proceedings 22nd

International Symposium on Computer Architecture, ACM,

New York, NY, USA, Vol. 23, No. 2, 1995, pp. 138-150.

[16]. M. S. Schlansker, and J. H. Park, On Predicated Execution. In

Software and System Laboratories, Technical Report HPL-91-

58, Hewlett-Packard Research Laboratories, Palo Alto, USA,

1991, pp. 1-7.

[17]. R. Johnson, and M. Schlansker, Analysis of Predicated Code.

Technical Report HPL-96-119, Hewlett-Packard Research

Laboratories, 1996, pp. 23-38.

[18]. S. Verma, B. Maderazo, and M. D. Koppelman, ―Spot Light – A

low Complexity Highly Accurate Profile-Based Branch

Predictor‖. In Proceedings of the 28th IEEE International

Performance Computing and Communication Conference,

Phoenix, Arizona, USA, 2009, pp. 239-247.

[19]. S. Verma, and M. D. Koppelman, ―Efficient Prefetching with

hybrid Schemes and Use of Program Feedback to adjust

Prefetcher Aggressiveness‖. The IEEE International Parallel

and Distributed Processing Symposium Ph.D. Forum in

Conjunction with Journal of Instruction-Level Parallelism,

Atlanta, GA, USA, 13(2011), pp. 1-4.

[20]. A. Seznec, The L-TAGE Branch Predictor. Journal of

Instruction-Level Parallelism, Rennes, France, Vol. 9, 2007, pp.

1-13, URL: www.jip.org/vol9/v9paper.pdf.

[21]. D. M. Koppelman, The Benefit of Multiple Branch Prediction

on Dynamically Scheduled Systems. In Workshop on

duplicating, deconstructing and debunking Held in conjunction

with the 29th International Symposium on Computer

Architecture, Anchorage, AK, USA, 2002, pp. 42-51.

[22]. M. Sanjay, A. A. Alfa, S. O. Adewale, A. M. Akogbe, and M.

O. Olaniyi, ―A Two-way Loop Algorithm for Exploiting

Instruction-Level Parallelism‖. In Proceedings of 14th Int’l

Conference on Computational Science and Its Application

(ICCSA 2014), published in Lectures Notes on Computer

Science (LNCS), Journal of Science, Springer, University of

Minho, Guimaraes, Portugal, in press.

[23]. A. A. Alfa, Development of a Two-way Loop Algorithm for

Improving Memory System Performance. A Master’s Thesis,

Department of Computer Engineering, Federal University of

Technology, Minna, Nigeria, pp. 1-75, unpublished.

