Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/13939
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeter, O. J.-
dc.contributor.authorAfolabi, O. A.-
dc.contributor.authorVictor, A. A-
dc.contributor.authorAkpan, C. E.-
dc.contributor.authorOguntolu, F. A.-
dc.date.accessioned2021-11-02T09:06:00Z-
dc.date.available2021-11-02T09:06:00Z-
dc.date.issued2018-
dc.identifier.citationPeter, O. J., Afolabi, O. A., Victor, A. A., Akpan, C. E., & Oguntolu, F. A. (2018). Mathematical model for the control of measles. Journal of Applied Sciences and Environmental Management, 22(4), 571-576.en_US
dc.identifier.issn1119-8362-
dc.identifier.urihttps://dx.doi.org/10.4314/jasem.v22i4.24-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/13939-
dc.description.abstractWe proposed a mathematical model of measles disease dynamics with vaccination by considering the total number of recovered individuals either from natural recovery or recovery due to vaccination. We tested for the existence and uniqueness of solution for the model using the Lipchitz condition to ascertain the efficacy of the model and proceeded to determine both the disease free equilibrium (DFE) and the endemic equilibrium (EE) for the system of the equations and vaccination reproduction number are given. Numerical simulation of the model shows that vaccination is capable of reducing the number of exposed and infectious population.en_US
dc.language.isoenen_US
dc.publisherJASEMen_US
dc.subjectMeaslesen_US
dc.subjectVaccinationen_US
dc.subjectEquilibrium Statesen_US
dc.subjectBasic Reproduction Numberen_US
dc.titleMathematical Model for the Control of measlesen_US
dc.typeArticleen_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Mathematical model for the control of measles.pdf224.92 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.