Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/13941
Title: A Mathematical Model on Cholera Dynamics with Prevention and Control
Authors: Ayoade, A. A.
Ibrahim, M. O.
Peter, O. J.
Oguntolu, F. A.
Keywords: model
equilibrium
reproduction number
stability
Issue Date: Jun-2018
Publisher: Covenant Journal of Physical and Life Sciences
Citation: Ayoade A. A., Ibrahim M. O., Peter O. J. & Oguntolu F. A. (2018). A mathematical model on cholera dynamics with prevention and control. Covenant Journal of Physical and Life Sciences. 6(1), 46-54.
Abstract: In this paper, we present and analyze a cholera epidemiological model with modifications to Fung (2014) cholera model. The extended model incorporates preventive and control measures as well as the possibility of disease transmission from person-to-person. Equilibrium analysis is conducted for the extended model for two cases of epidemic equilibrium and endemic equilibrium to establish disease free equilibrium state (DFE) and endemic equilibrium state (EE) respectively. We derive the basic reproduction numbers and establish the local asymptotical stability for the two models. We later use the results to compare the models at the DFE states as regards the effects of control on the extended model. The endemic equilibrium state (EE) of the extended model is also studied and found to be locally asymptotically stable when the basic reproduction number . This shows that cholera can be eliminated in a population only if the preventive and control measures are strong enough.
URI: https://journals.covenantuniversity.edu.ng/index.php/cjpls/article/view/933
http://repository.futminna.edu.ng:8080/jspui/handle/123456789/13941
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
A Mathematical Model on Cholera Dynamics with Prevention and Control.pdf265.18 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.