Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/13949
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbubakar, S.-
dc.contributor.authorAkinwande, N. I.-
dc.contributor.authorJimoh, O. R.-
dc.contributor.authorOguntolu, F. A.-
dc.contributor.authorOgwumu, O. D.-
dc.date.accessioned2021-11-02T12:43:44Z-
dc.date.available2021-11-02T12:43:44Z-
dc.date.issued2013-
dc.identifier.citationAbubakar, S., Akinwande, N. I., Jimoh, O. R., Oguntolu, F. A., & Ogwumu, O. D. (2013). Approximate Solution of SIR Infectious Disease Model Using Homotopy Pertubation Method (HPM). Pacific Journal of Science and Technology, 14(2), 163-169.en_US
dc.identifier.urihttp://www.akamaiuniversity.us/PJST14_2_163.pdf-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/13949-
dc.description.abstractIn this paper we proposed a SIR model for general infectious disease dynamics. The analytical solution is obtained using the Homotopy Perturbation Method (HPM). We used the MATLAB computer software package to obtain the graphical profiles of the three compartments while varying some salient parameters. The analysis revealed that the efforts at eradication or reduction of disease prevalence must always match or even supersede the infection rate.en_US
dc.language.isoenen_US
dc.publisherThe Pacific Journal of Science and Technologyen_US
dc.subjectSIR infectious diseaseen_US
dc.subjectHomotopy Perturbation Methoden_US
dc.subjectHPMen_US
dc.titleApproximate Solution of SIR Infectious Disease Model Using Homotopy Pertubation Method (HPM)en_US
dc.typeArticleen_US
Appears in Collections:Mathematics



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.