Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/13952
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeter, O. J.-
dc.contributor.authorAkinduko, O. B.-
dc.contributor.authorOguntolu, F. A.-
dc.contributor.authorIshola, C. Y.-
dc.date.accessioned2021-11-02T13:24:53Z-
dc.date.available2021-11-02T13:24:53Z-
dc.date.issued2018-05-
dc.identifier.citationPeter, O. J., Akinduko, O. B., Oguntolu, F. A., & Ishola, C. Y. (2018). Mathematical model for the control of infectious disease. Journal of Applied Sciences and Environmental Management, 22(4), 447-451.en_US
dc.identifier.issn2659-1502-
dc.identifier.urihttps://www.ajol.info/index.php/jasem/article/view/170456-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/13952-
dc.description.abstractWe proposed a mathematical model of infectious disease dynamics. The model is a system of first order ordinary differential equations. The population is partitioned into three compartments of Susceptible S(t) , Infected I(t) and Recovered R(t). Two equilibria states exist: the disease-free equilibrium which is locally asymptotically stable if Ro < 1 and unstable if Ro > 1. Numerical simulation of the model shows that an increase in vaccination leads to low disease prevalence in a population.en_US
dc.language.isoenen_US
dc.publisherAfrican Journals Onlineen_US
dc.subjectInfectious Diseaseen_US
dc.subjectEquilibrium Statesen_US
dc.subjectBasic Reproduction Numberen_US
dc.titleMathematical model for the control of infectious diseaseen_US
dc.typeArticleen_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Mathematical model for the control of infectious disease.pdf219.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.