Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/14824
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEfefiong, Udo-Nya-
dc.contributor.authorAdebayo, Olawale Surajudeen-
dc.date.accessioned2022-06-24T06:22:38Z-
dc.date.available2022-06-24T06:22:38Z-
dc.date.issued2021-08-
dc.identifier.citationEfefiong Udo-Nya, Olawale Surajudeen Adebayo (2021). Comparative Analysis of Machine Learning Algorithms for the Detection of Android Malware. International Journal of Innovative Research in Advance Engineering (IJIRAE): Volume 8(9). Available at https://doi.org/10.26562/ijirae.2021.v0809.004.en_US
dc.identifier.issn26562-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/14824-
dc.description.abstractThis paper examines the effectiveness of some machine learning algorithms in the detection of android malicious application. In order to carry out this analysis, drebin dataset of android malicious and good applications were obtained and used for the classification as described in a section of this article. The classification results show that the Cubic SVM, Quadratic SVM and ensemble Subspace KNN performed better with 99.2%, 98.7% and 98.4% accuracy with 0.0079, 0.0129 and 0.1598 error rate respectively.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Innovative Research in Advance Engineering (IJIRAE)en_US
dc.subjectAndroid Platformen_US
dc.subjectMachine Learning,en_US
dc.subjectClassificationen_US
dc.subjectMalwareen_US
dc.subjectSVMen_US
dc.subjectEnsemble Methoden_US
dc.subjectMobile Deviceen_US
dc.titleComparative Analysis of Machine Learning Algorithms for the Detection of Android Malwareen_US
dc.typeArticleen_US
Appears in Collections:Cyber Security Science

Files in This Item:
File Description SizeFormat 
IJIRAE Efe paper.pdfCOMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR THE DETECTION OF ANDROID MALWARE98.19 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.