Please use this identifier to cite or link to this item:
http://ir.futminna.edu.ng:8080/jspui/handle/123456789/16044
Title: | Financial fraud detection using radial basis network |
Authors: | Alabi, I.O. Jimoh, R.G. |
Keywords: | Artificial neural network data mining detecting fraud transactions, radial basis function network |
Issue Date: | Jan-2018 |
Publisher: | CSL Press, USA |
Citation: | 5. Alabi, I. O., & Jimoh, R. G. (2018). Financial fraud detection using radial basis function network. Circulation in computer science, 3(1), 10-21. |
Series/Report no.: | Circulation in Computer Science;Vol.3, No.1, |
Abstract: | The ubiquitous cases of abnormal transactions with intent to defraud is a global phenomenon. An architecture that enhances fraud detection using a radial basis function network was designed using a supervised data mining technique― radial basis function (RBF) network, interpolation approximation method. Several base models were thus created, and in turn used in aggregation to select the optimum model using the misclassification erro accuracy, sensitivity, specificity and receiver operating characteristics (ROC) metrics. The results shows model has a zero-tolerance for fraud with better especially in cases where there were no fraud doubtful cases were rather flagged than to allow a fraud incident to pass undetected. Expectedly, the model’s computations converge faster at 200 iterations. generic with similar characteristics with other classification methods but distinct parameters thereby minimizing the time and cost of fraud detection by adopting computationally efficient algorithm. |
URI: | http://repository.futminna.edu.ng:8080/jspui/handle/123456789/16044 |
ISSN: | ISSN 2456-3692 |
Appears in Collections: | Information and Media Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ccs-2017-252-71.pdf | 1.73 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.