Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/16699
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCole, A. T.,-
dc.contributor.authorDavid, I. J.,-
dc.contributor.authorAle, S.-
dc.date.accessioned2023-01-05T09:59:17Z-
dc.date.available2023-01-05T09:59:17Z-
dc.date.issued2021-06-
dc.identifier.isbn2682-6569-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/16699-
dc.description.abstractThis paper proposes the derivation of a three-step eleventh order hybrid linear multi-step method (LMM) with nine off-step points for the solution of first order stiff differential equations. The obtained methods are then applied in block form as simultaneous numerical integrators over non-overlapping intervals. The numerical results show improved results over the existing methods in literatures considered, the schemes are consistent, zero-stable, and convergent.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Industrial Technology, Engineering, Science and Education (IJITESED)en_US
dc.relation.ispartofseries2;1-
dc.subjectHybrid, Collocation, Interpolation, Adams type, Stiff differential equations, zero-stable.en_US
dc.titleDevelopment of Implicit Hybrid Adams Type Block Linear Multistep Method for the Solution of Stiff Ordinary Differential Equationsen_US
dc.typeArticleen_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Repository journal 3a.pdf4.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.