Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/17413
Title: Mathematical model of the Bloch NMR flow equations for the analysis of fluid flow in restricted geometries using the Boubaker polynomials expansion scheme
Authors: Awojoyogbe, Bamidele
Faromika, Peace
Moses, Olufemi Folorunsho
Dada, Michael
Boubaker, Karem
Fuwape, Ibiyinka Agboola
Keywords: Bloch NMR flow equations
Diffusion equation
Diffusion coefficient
Restricted geometries
Issue Date: 1-Jan-2010
Publisher: Elsevier B.V.
Citation: Awojoyogbe, O. B., Faromika, O. P., Moses, F. O., Dada, M., Boubaker, K., & Fuwape, I. A. (2010). Mathematical model of the Bloch NMR flow equations for the analysis of fluid flow in restricted geometries using the Boubaker polynomials expansion scheme. Current Applied Physics, 10(1), 289-293.
Series/Report no.: Curriculum Vitae;25
Abstract: In this study, the Bloch NMR flow equations are modelled into diffusion equation with constant transport coefficient in terms of the NMR transverse magnetization. Mathematical conditions are established for the diffusion coefficients to be constant or spatially varied with direction. When these conditions are met, the diffusion coefficients can then be easily evaluated in terms of Boubaker polynomials for the study of flow in restricted geometries.
Description: https://www.sciencedirect.com/science/article/abs/pii/S1567173909003009
URI: http://repository.futminna.edu.ng:8080/jspui/handle/123456789/17413
Appears in Collections:Physics

Files in This Item:
File Description SizeFormat 
Mathematical model.pdfAbstract97.59 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.