Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/17565
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOkwuashi, Onuwa-
dc.contributor.authorMcConchie, Jack-
dc.contributor.authorNwilo, Peter-
dc.contributor.authorIsong, Mfon-
dc.contributor.authorEyoh, Aniekan-
dc.contributor.authorNwanekezie, Okey-
dc.contributor.authorEyo, Etim-
dc.contributor.authorEkpo, Aniekan Danny-
dc.date.accessioned2023-01-19T13:02:04Z-
dc.date.available2023-01-19T13:02:04Z-
dc.date.issued2012-05-
dc.identifier.citationOkwuashi, Onuwa., McConchie, Jack., Nwilo, Peter., Isong, Mfon., Eyoh, Aniekan., Nwanakezie, Okey., Eyo, Etim., and Ekpo, Aniekan Danny (2012). Predicting future land use change using support vector machine-based GIS cellular automata: A case of Lagos, Nigeria. Journal of Sustainable Development, 5(5), 132-139.en_US
dc.identifier.urihttp://dx.doi.org/10.5539/jsd.v5n5p132-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/17565-
dc.description.abstractLagos has undergone an unprecedented urban expansion. Contemporary findings favour the integration of cellular automata and geographic information systems for modelling land use change. This research introduces the support vector machine based GIS cellular automata calibration for land use change prediction of Lagos. The support vector machine based cellular automata model is loosely coupled with the geographic information systems. Support vector machine parameters are optimised with the k-fold cross-validation technique, using the linear, polynomial, and RBF kernels functions. The land use change prediction is based on three land use epochs: 1963-1978, 1978-1984, and 1984-2000. The performance of the model was evaluated using the Kappa statistic and receiver operating characteristic. The order of performance of the three kernels is: RBF, polynomial, and linear. The results indicate substantial agreement between the actual and predicted maps. The urban forms in 2015 and 2030 are predicted based on the three land use epochs.en_US
dc.language.isoenen_US
dc.publisherJournal of Sustainable Developmenten_US
dc.relation.ispartofseries5;5-
dc.subjectGISen_US
dc.subjectcellular automataen_US
dc.subjectsupport vector machineen_US
dc.subjectland use changeen_US
dc.titlePredicting Future Land Use Change Using Support Vector Machine Based GIS Cellular Automata: A Case of Lagos, Nigeriaen_US
dc.typeArticleen_US
Appears in Collections:Surveying & Geoinformatics

Files in This Item:
File Description SizeFormat 
Journal_10.pdfJournal_#10896.31 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.