Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/18030
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOlalere, M-
dc.contributor.authorYisa, R. N.-
dc.contributor.authorOjeniyi, Joseph Adebayo-
dc.contributor.authorNwaocha, V. O.-
dc.date.accessioned2023-02-13T06:16:54Z-
dc.date.available2023-02-13T06:16:54Z-
dc.date.issued2020-05-
dc.identifier.issn2645-2960-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/18030-
dc.description.abstractHTTP Botnet machine learning Classifiers Random Forest Botmasteren_US
dc.language.isoenen_US
dc.publisherInternational Journal of Information Processing and Communicationen_US
dc.relation.ispartofseriesVol. 9 No. 1&2;-
dc.subjectHTTP Botnet machine learning Classifiers Random Forest Botmasteren_US
dc.titleIdentification of Best Machine Learning Algorithms for Detection of HTTP Botnet Attacken_US
dc.typeArticleen_US
Appears in Collections:Cyber Security Science

Files in This Item:
File Description SizeFormat 
A16-olalere et al 2020_identification of best ML.pdf3.29 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.