Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/2142
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSubairu, S. O.-
dc.contributor.authorAlhassan, J. K.-
dc.contributor.authorAbdulhamid, S. M.-
dc.contributor.authorOjeniyi, J. A.-
dc.date.accessioned2021-06-08T12:15:42Z-
dc.date.available2021-06-08T12:15:42Z-
dc.date.issued2020-
dc.identifier.citationhttps://www.ijeai.com/archive-2020/volume-1-issue-4en_US
dc.identifier.issn2708-2792-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/2142-
dc.description.abstractConvolutional Neural Network (CNN) has been described by most researchers as the best when it comes to image classification problems. This Neural Network is made up of high sensitive hyperparameters, such that if not properly design could lead to model misclassification and such returns high false positive (FP) and high false negative(FN). In other to solve this problem, this research proposed and developed design frameworks that mitigate this identified problem when it comes to image classification model using a Convolutional Neural Networken_US
dc.language.isoenen_US
dc.publisherInternational Journal of Engineering and Artificial Intelligenceen_US
dc.relation.ispartofseriesVolume 1 Number 4;-
dc.subjectConvolutional Neural Network, Hyperparameters, Model, False Positive, False Negative.en_US
dc.titleEmpirical Design Framework for Development of Convolutional Neural Network Based Modelen_US
dc.typeArticleen_US
Appears in Collections:Computer Science

Files in This Item:
File Description SizeFormat 
Emperical design framework.pdf40.63 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.