Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/27531
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBashir, Sulaimon Adebayo-
dc.contributor.authorJimoh, Oladebo Suliat-
dc.contributor.authorKolo, Mohammed Idris-
dc.contributor.authorAminu, Enesi Femi-
dc.date.accessioned2024-04-27T17:36:12Z-
dc.date.available2024-04-27T17:36:12Z-
dc.date.issued2023-06-
dc.identifier.citation10. Bashir, S. A., Jimoh, O. S., Kolo, I. M., & Enesi, F. A. (2023). Development of Anomaly Detector for Motor Bearing Condition Monitoring using Fast Fourier Transform (FFT) and Long Short Term Memory (LSTM)-Autoencoder. I-Manager’s Journal on Pattern Recognition, 10(1), 1.en_US
dc.identifier.issnISSN-2349-7912-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/27531-
dc.description.abstractAnomaly detection in motor bearings is a critical task for preventing downtime and ensuring efficient operation. This paper proposes a novel approach for anomaly detection using Fast Fourier Transform (FFT) and Long Short-Term Memory (LSTM)-Autoencoder (AE). A data processing approach based on FFT was developed to pre-process the raw sensor data. This helped to reduce noise and improve the Signal-to-Noise Ratio (SNR). Additionally, an anomaly detection model based on LSTM-Autoencoder was developed and trained on the pre-processed data. The proposed approach was able to detect anomalies at a low threshold and achieved a high accuracy score.en_US
dc.language.isoenen_US
dc.publisheri-manager's Journal on Pattern Recognitionen_US
dc.relation.ispartofseriesVolume 1, Issue 1;-
dc.subjectMotor Bearing, Anomaly Detection, Deep Learning, Fast Fourier Transform, Long Short Term Memory, Autoencoder.en_US
dc.titleDEVELOPMENT OF ANOMALY DETECTOR FOR MOTOR BEARING CONDITION MONITORING USING FAST FOURIER TRANSFORM (FFT) AND LONG SHORT TERM MEMORY (LSTM)-AUTOENCODERen_US
dc.typeArticleen_US
Appears in Collections:Computer Science

Files in This Item:
File Description SizeFormat 
Bashir_JPR 2022_Jimoh.pdf5.58 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.