Please use this identifier to cite or link to this item:
http://ir.futminna.edu.ng:8080/jspui/handle/123456789/28039
Title: | Comparative Evaluation of Image Segmentation Techniques for Flood Detection in High-Resolution Satellite Imagery |
Authors: | Agbo, C Mohammed, A.D. Alhassan, J.K Adepoju, Solomon Adelowo |
Keywords: | flood high resolution image segmentation statelite imagery |
Issue Date: | Dec-2022 |
Series/Report no.: | ;29 (2) |
Abstract: | Speedy reaction to natural disasters, such as floods, is critical to minimising loss of life and pain. Access to fast and reliable data is critical for rescue teams. Satellite photography provides a wealth of data that may be analysed to assist pinpoint disaster-affected areas. The use of segmentation to analyse satellite images is becoming increasingly important in environmental and climatic monitoring, particularly in detecting and controlling natural disasters. Image segmentation improves pattern recognition, which divides a single image into several homogeneous pieces. The efficiency of image segmentation techniques varies depending on the layout of objects, illumination, shadow, and other variables. However, there is no one-size-fits-all method for successfully segmenting all imagery; specific methods are more efficient than others. This report compares four different technologies. Commonly used image segmentation techniques: K-means clustering (K.C.), Color thresholding (C.T.), Region-based Active Contour (R.A.C.) and Edge-based Active Contour (E.A.C.) segmentation. These four techniques were used to detect, and segment flooded areas in high-resolution satellite imagery. The K.C. method had the best flood segmentation rate with a Jaccard Index of 0.8234, Dice of 0.9234, the precision of 0.9589, recall of 0.9078 and BFscore of 0.9327, which was higher than the other three segmentation technique and previous works. |
URI: | http://repository.futminna.edu.ng:8080/jspui/handle/123456789/28039 |
Appears in Collections: | Computer Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Comparative-Evaluation-of-Image-Segmentation-Techniques-for-Flood-Detection-in-High-Resolution-Satellite-Imagery (1).PDF | 766.25 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.