Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/3220
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSomma, Samuel Abu-
dc.contributor.authorAkinwande, Ninuola Ifeoluwa-
dc.contributor.authorJiya, Mohammed-
dc.contributor.authorAbdulrahman, Sirajo-
dc.date.accessioned2021-06-15T11:56:16Z-
dc.date.available2021-06-15T11:56:16Z-
dc.date.issued2017-12-
dc.identifier.urihttp://www.akamaiuniversity.us/PJST18_2_110.pdf-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/3220-
dc.description.abstractIn this paper we formulate a mathematical model of yellow fever incorporating secondary host. We obtained the Disease Free Equilibrium (DFE) Points and compute the basic reproduction number. The local and global stability of the DFE was analyzed using Jacobian Matrix stability techniques and Lyapunov function respectively. The local and global stability was asymptotically stable if 1 0 R  and 1 0 R  , respectively. The basic reproduction number and control parameters of the model were presented graphically.en_US
dc.language.isoenen_US
dc.publisherPacific Journal of Science and Technology. 18(2):110-119, (2017)en_US
dc.subjectbasic reproduction numberen_US
dc.subjectdisease free equilibriumen_US
dc.subjectyellow feveren_US
dc.subjectsecondary hosten_US
dc.subjectstabilityen_US
dc.titleStability Analysis of Disease Free Equilibrium (DFE) State of a Mathematical Model of Yellow Fever Incorporating Secondary Host.en_US
dc.typeArticleen_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
PJST18_2_110-2017 FINAL.pdf421.74 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.