Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/3543
Title: Enhanced Select and Test (eST) Algorithm: Framework for Diagnosing and Monitoring Related Ailments
Authors: Aminu, Enesi Femi
Oyelade, Olaide N
Adepoju, Solomon Adelowo
Ibrahim, Shehi Shehu
Keywords: inference making
intelligent systems and diagnosis
Issue Date: Nov-2016
Publisher: ICTA 2016
Abstract: Diagnosis, prediction, machine learning, and decision making are all areas of application of artificial intelligence. Particularly, intelligent (medical) diagnosis systems are now becoming pervasive providing support to healthcare delivery. However, there is a lack of precision and approximation of the algorithms driving such diagnostics systems. Though there is a number of reasoning algorithms for carrying out this diagnostic task, the precision of these diagnostic algorithms are being impaired by their reasoning structures. This paper reviews and provides an enhancement to select and test (ST) reasoning algorithm. This algorithm, adjured to be the most precise among the existing diagnostic algorithms, will be enhanced by employing the use of semantic web reasoning structures. Reasoning at the abduction, deduction, and induction levels are oriented towards rule base reasoning pattern in the semantic web. Also, a series of modularized ontology knowledge bases are stacked together in building a complex but distributed knowledge base for the entire system. The implementation of this enhanced algorithm will be used as a test-bed for diagnosing and monitoring related ailments.
URI: http://repository.futminna.edu.ng:8080/jspui/handle/123456789/3543
Appears in Collections:Computer Science

Files in This Item:
File Description SizeFormat 
select and test2016.pdf580.74 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.