Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/5185
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNdanusa, Abdulrahman-
dc.contributor.authorIsah, Ibrahim Onimisi-
dc.contributor.authorAbubakar, Abdullahi Wachin-
dc.date.accessioned2021-06-27T12:53:18Z-
dc.date.available2021-06-27T12:53:18Z-
dc.date.issued2016-
dc.identifier.citationA. Ndanusa, I. O. Isah and A. W. Abubakar (2016). Exponentially fitted explicit fifth order improved Runge-Kutta method for solution of initial value problems with oscillatory behaviour. Journal of Science, Technology and Mathematics Education (JOSTMED), 12 (12): 104 - 114en_US
dc.identifier.issn0748 - 4710-
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/5185-
dc.description.abstractIn this article, we constructed exponentially fitted Improved Runge-Kutta (EFIRK) method for the numerical integration of initial value problems whose solutions are linear combinations of functions of the form {x^j e^ωx,x^j e^(-ωx) },(ω∈R or iR,j=0,1,⋯jmax), where 0≤jmax≤⌊s/2 -1⌋,s being the number of stages of the method. The number is of order five with five stages, wherein the coefficients depend on the frequency and step size. A heuristically chosen algorithm is adopted to determine the frequency (ω) in each integration interval [x_n,x_(n+1)]. The results of numerical experiments with sample initial value problems with oscillatory solutions established the superiority of the exponentially fitted method over the non-fitted method.en_US
dc.language.isoenen_US
dc.publisherJournal of Science, Technology and Mathematics Educationen_US
dc.subjectExponential-fitting, Imroved Runge-Kutta method, ge-Kutta method, Oscillatory solution, Initial value problemen_US
dc.titleExponentially fitted explicit fifth order improved Runge-Kutta method for solution of initial value problems with oscillatory behaviouren_US
dc.typeArticleen_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Ndanusa, Isah and Abubakar (2016).pdf2.61 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.