Mathematics : [528] Collection home page

Mathematics

Browse
Subscribe to this collection to receive daily e-mail notification of new additions RSS Feed RSS Feed RSS Feed
Collection's Items (Sorted by Submit Date in Descending order): 101 to 120 of 528
Issue DateTitleAuthor(s)
2022-07EFFECTS OF MHD FREE CONVECTIVE HEAT AND MASS TRANSPORT FLOW PAST AN INFINITE PLATE WITH VISCOUS ENERGY DISSIPATIONUgwu, Ugochukwu Clement; Cole, A. T.; Faruk, A. I.; Adedayo, O. A.; Asonibare, F. I.; Fadepo, J. T.
2022-06MODELING MAGNETOHYDRODYNAMICS FLOW OF CONTINUOUS DUSTY PARTICLES IN A NON-NEWTONIAN DARCY FLUID BETWEEN PARALLEL PLATESUgwu, Ugochukwu Clement; Olayiwola, R. O.; Adedayo, O. A.; Enefu, P. A.; Akintaro, T. J.; Zhiri, A. B
2021-03METHOD OF LINES ANALYSIS OF MHD EFFECT ON CONVECTVE FLOW OF DUSTY FLUID IN THE PRESENCE OF VISCOUS ENERGY DISSIPATIONUgwu, Ugochukwu Clement; Cole, A. T.; Olayiwola, R. O.; Kazeem, J. A.
2021-09EFFECTS OF HALL CURRENT ON TRANSIENT MHD NATURAL CONVECTION FLOW IN A VERTICAL MICROCHANNELEnefu, P. A.; Mohammed, A. A.; Olayiwola, R. O.; Ugwu, Ugochukwu Clement; Oyubu, J. P.
2021-06ANALYSIS OF MAGNETOHYDRODYNAMICS EFFECTS ON CONVECTIVE FLOW OF DUSTY VISCOUS FLUIDUgwu, Ugochukwu Clement; Cole, A. T.; Olayiwola, R. O.
2016Effects of Pollutants and Atmospheric Temperature Rise on AgricultureAIYESIMI, Y. M.; SALIHU, NASIRU OMEIZA
2022Mixed Convective Mmagnetohydrodynamics Micropolar Boundary Layer Flow Past a Stretching Sheet with Heat GenerationYUSUF, A.; ISHAQ, M. A.; SALIHU, NASIRU OMEIZA; SALISU, A.; BOLARIN, G.
2021MATHEMATICAL MODELING OF BLOOD FLOW IN THE STENOSED ARTERYSALIHU, NASIRU OMEIZA
2015-11A Mathematical Model of a Yellow Fever Dynamics with VaccinationOguntolu, F. A.; Akinwande, N. I.; Somma, S. A.; Eguda, F. Y.; Ashezua, T. T.
2018Multi-step Homotopy Analysis Method for Solving Malaria ModelPeter, O. J.; Adebisi, A. F.; Oguntolu, F. A.; Bitrus, S.; Akpan, C. E.
2019-06Optimal Intervention Strategies for Transmission Dynamics of Cholera DiseasePeter, O. J.; Ayoade, A. A.; Ayoola, T. A.; Oguntolu, F. A.; Amadiegwu, S.; Abioye, A. I.
2020-10Modelling and optimal control analysis of Lassa fever diseasePeter, O. J.; Abioye, A. I.; Oguntolu, F. A.; Owolabi, T. A.; Ajisoped, M. O.; Zakari, A. G.; Shaba, T. G.
2020-06Global Stability Analysis of Typhoid Fever ModelPeter, O. J.; Adebisi, A. F.; Ajisope, M. O.; Ajibade, F. O.; Abioye, A. I.; Oguntolu, F. A.
2021-05Mathematical model of COVID-19 in Nigeria with optimal controlAbioye, A. I.; Peter, O. J.; Ogunseye, H. A.; Oguntolu, F. A.; Oshinubi, K.; Ibrahim, A. A.; Khan, I.
2021-07MODELLING AND OPTIMAL CONTROL ANALYSIS OF TYPHOID FEVERAyoola, T. A.; Edogbanya, H. O.; Peter, O. J.; Oguntolu, F. A.; Oshinubi, K.; Olaosebikan, M. L.
2015-02A Mathematical Study of HIV Transmission Dynamics with Counselling and Antiretroviral TherapyOguntolu, F. A.; Olayiwola, R. O.; Bello, A. O.
2020-10Stability and optimal control analysis of an SCIR epidemic modelPeter, O. J.; Viriyapong, R.; Oguntolu, F. A.; yosyingyong, P.; Edogbanya, H. O.; Ajisope, M. O.
2021-07Fractional order of pneumococcal pneumonia infection model with Caputo Fabrizio operatorPeter, O. J.; Yusuf, A; Oshinubi, K.; Oguntolu, F. A.; Lawal, J. O.; Abioye, A. I.; Ayoola, T. A.
2022FORMULATION OF 𝒌 −STEP ORDER 𝟐𝒌 FUZZY-STRUCTURED BLOCK HYBRID BACKWARD DIFFERENTIATION FORMULAE ALGORITHMS FOR THE APPROXIMATE SOLUTION OF FUZZY DIFFERENTIAL EQUATIONSMOHAMMED, U.; USMAN, A. M.; SALIHU, NASIRU OMEIZA; MA’ALI, A. I.; AKINTUBOBO, B. G.
2022Mixed Convective Mmagnetohydrodynamics Micropolar Boundary Layer Flow Past a Stretching Sheet with Heat Generation 1Yusuf, A., 1 Ishaq, M. A., 1Salihu, N. O., 2Salisu, A. and 1Bolarin, G. 1Department of Mathematics, Federal University of Technology, Minna, Niger State, Nigeria 2Department of Computer Science, Niger State Polytechnic, Zungeru, Niger State, Nigeria ABSTRACT The problem of mixed convective magnetohydrodynamics micropolar boundary layer past a stretching sheet with heat generation was presented in rectangular form. The partial differential equations formulated are transformed into nonlinear ordinary differential equations using the stream functions and appropriate similarity variables. The solution to the nonlinear coupled ordinary differential equations is presented via decomposition method. The results are validated with the literatures and there is an agreement. The effects of dimensionless physical parameters which occur in the presented results are graphically studied in the absence of microstructural slip. The micro rotation is found to be a reducing agent of thermal and mass Grashof numbers while the fluid is an increasing agent due to the increase in the temperature which resulted in reduction of the viscousity.YUSUF, A.; ISHAQ, M. A.; SALIHU, NASIRU OMEIZA; SALISU, A.; BOLARIN, G.
Collection's Items (Sorted by Submit Date in Descending order): 101 to 120 of 528