Please use this identifier to cite or link to this item: http://ir.futminna.edu.ng:8080/jspui/handle/123456789/7206
Title: The Effect of Window Length on Accuracy of Smartphone-Based Activity Recognition.
Authors: Bashir, Sulaimon Adebayo
Doolan, Daniel
Petrovski, Andrei
Keywords: Activity Recogntion
Smartphones
Accelerometer Sensor Data
Machine Learning Algorithms
Issue Date: 2016
Publisher: International Association of Engineers (IAENG)
Citation: Bashir, S.A, Doolan, D., Petrovski, A. (2016). The Effect of Window Length on Accuracy of Smartphone-Based Activity Recognition. International Association of Engineers (IAENG) International Journal of Computer Science 43(1) pages 126-136.
Abstract: One of the main approaches for personalization of activity recognition is the generation of the classification model from user annotated data on mobile itself. However, giving the resource constraints on such devices there is a need to examine the effects of system parameters such as the feature extraction parameter that can affect the performance of the system. Thus, this paper examines the effects of window length of the sensor data and varying data set sizes on the classification accuracy of four selected supervised machine learning algorithms running on off the shelf smartphone. Our results show that out of the three window lengths of 32, 64 and 128 considered, the 128 window length yields the best accuracy for all the algorithms tested. Also, the time taken to train the algorithms with samples of this length is minimal compare to 64 and 32 window lengths. A smartphone based activity recognition is implemented to utilize the results in an online activity recognition scenario
URI: http://repository.futminna.edu.ng:8080/jspui/handle/123456789/7206
Appears in Collections:Computer Science

Files in This Item:
File Description SizeFormat 
journal Effect of window lengths.pdf8.55 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.